Skip to main content
Log in

Analysis of the Fungal Diversity in Citrus Leaves with Greasy Spot Disease Symptoms

  • Fungal Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Citrus greasy spot (CGS) is a disease of citrus with worldwide distribution and recent surveys have revealed a high level of incidence and severity of symptoms of the disease in Sicily, southern Italy. Although Mycosphaerel la citri (anamorph Zasmidium citri-griseum) and other related species are generally considered as causal agents, the etiology of CGS is still unclear. Here, we report the use of an amplicon metagenomic approach to investigate the fungal communities on citrus leaves symptomatic or asymptomatic for CGS from an orchard in Sicily showing typical CGS symptoms. A total of 35,537 high-quality chimeric free reads were obtained and assigned to 176 operational taxonomic units (OTUs), clustered at 99 % similarity threshold. Data revealed a dominating presence of the phylum Ascomycota (92.6 %) over other fungal phyla. No significant difference was observed between symptomatic and asymptomatic leaves according to both alpha and beta diversity analyses. The family Mycosphaerellaceae was the most abundant and was represented by the genera Ramularia, Mycosphaerella, and Septoria with 44.8, 2.4, and 1.7 % of the total detected sequences, respectively. However, none of the species currently reported as causal agents of CGS was detected in the present study. The most abundant sequence type (ST) was associated to Ramularia brunnea, a species originally described to cause leaf spot in a perennial herbaceous plant of the family Asteraceae. Results exclude that CGS symptoms observed in Sicily are caused by Z. citri-griseum and, moreover, they indicate that a considerable part of the fungal diversity in citrus leaves is still unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mondal S, Timmer L (2006) Greasy spot, a serious endemic problem for citrus production in the Caribbean Basin. Plant Dis 90(5):532–538

    Article  Google Scholar 

  2. Whiteside J (1988) Greasy spot and greasy spot rind blotch. Compendium of Citrus Diseases. Whiteside, JO, Garnsey, SM and Timmer, LW (Eds). APS, St Paul, Minnesota, USA, pp 15-17

  3. Whiteside J (1983) Fungicidal effects of some acaricides on Mycosphaerella citri. Plant Dis 67(8):864–866

    Article  Google Scholar 

  4. Whiteside J (1972) Histopathology of citrus greasy spot and identification of the causal fungus. Phytopathology 62(2):260–263

    Article  Google Scholar 

  5. Whiteside J (1970) Etiology and epidemiology of citrus greasy spot. Phytopathology 60(10):1409–1414

    Article  Google Scholar 

  6. Timmer L, Gottwald T (2000) Greasy spot and similar diseases. Compendium of citrus diseases’ Second edition. LW Timmer, SM Garnsey, JH Graham (Eds). pp 25-28

  7. Mondal S, Timmer L (2002) Environmental factors affecting pseudothecial development and ascospore production of Mycosphaerella citri, the cause of citrus greasy spot. Phytopathology 92(12):1267–1275

    Article  CAS  PubMed  Google Scholar 

  8. Timmer L, Roberts P, Darhower H, Bushong P, Stover E, Peever T, Ibáñez A (2000) Epidemiology and control of citrus greasy spot in different citrus-growing areas in Florida. Plant Dis 84(12):1294–1298

    Article  Google Scholar 

  9. Fawcett HS (1915) Citrus diseases of Florida and Cuba compared with those of California. Calif Agric Exp Stn Bull B262:153–211

    Google Scholar 

  10. Thompson W (1948) Greasy spot on citrus leaves. Citrus Industry 29(4):20–22

    CAS  Google Scholar 

  11. Yamada S (1956) Studies on the greasy spot (black melanose) of citrus. II. Morphological characteristics of the causal fungus (Mycosphaerella horii Hara). Horticulture Division, National Tokai-kinki Agricultural Experiment Station, Okitsu Japan. Bulletin 3:49–62

    Google Scholar 

  12. Whiteside J (1970) Effect of fungicides applied to citrus trees on peritheclal development by the greasy spot fungus in detached leaves. Plant Dis Rep 54:865–869

    CAS  Google Scholar 

  13. Hidalgo H, Sutton TB, Arauz F (1997) Epidemiology and control of citrus greasy spot on Valencia orange in the humid tropics of Costa Rica. Plant Dis 81(9):1015–1022

    Article  Google Scholar 

  14. Haggag W (2012) First report of Mycosphaerella citri, the agent of greasy spot of orange in Egypt. J Plant Pathol 94(4): pS4.92.

  15. Wellings C (1981) Pathogenicity of fungi associated with citrus greasy spot in New South Wales. Trans Br Mycol Soc 76(3):495–499

    Article  Google Scholar 

  16. Huang F, Groenewald J, Zhu L, Crous P, Li H (2015) Cercosporoid diseases of citrus. Mycologia 107(6):1151–1171

    Article  PubMed  Google Scholar 

  17. Grasso S, Catara A (1982) Osservazioni su intumescenze gommose delle foglie di agrumi [dovute a funghi patogeni]. Informatore fitopatologico 32:43–46

    Google Scholar 

  18. Grasso FM, Bella P, Grasso S, Catara A (2008) New or re-emerging fungal citrus diseases in the Mediterranean. Integr Contr Citrus Fruit Crops 38:301–304

    Google Scholar 

  19. Biasi A, De Patrizio A, Faedda R, Schena L, Pane A, Cacciola S, Magnano di San Lio G (2012) Septoria citri is a common pathogen of citrus in Southern Italy. J Plant Pathol 94(4)

  20. Wang W-L, Xu S-Y, Ren Z-G, Tao L, Jiang J-W, Zheng S-S (2015) Application of metagenomics in the human gut microbiome. World J Gastroenterol 21(3):803–814

  21. Xu X, Passey T, Wei F, Saville R, Harrison RJ (2015) Amplicon-based metagenomics identified candidate organisms in soils that caused yield decline in strawberry. Horticulture Research 2:15022

    Article  PubMed  PubMed Central  Google Scholar 

  22. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18:315–322

    Google Scholar 

  23. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336. doi:10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reeder J, Knight R (2010) Rapidly denoising pyrosequencing amplicon reads by exploiting rank-abundance distributions. Nat Methods 7(9):668–669. doi:10.1038/nmeth0910-668b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, De Wit P, Sánchez-García M, Ebersberger I, de Sousa F, Amend A, Jumpponen A, Unterseher M, Kristiansson E, Abarenkov K, Bertrand YJK, Sanli K, Eriksson KM, Vik U, Veldre V, Nilsson RH (2013) Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol 4(10):914–919. doi:10.1111/2041-210X.12073

    Google Scholar 

  26. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461. doi:10.1093/bioinformatics/btq461

    Article  CAS  PubMed  Google Scholar 

  27. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410, http://dx.doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  28. Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27(4):325–349

    Article  Google Scholar 

  29. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71(12):8228–8235. doi:10.1128/AEM.71.12.8228-8235.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Abdelfattah A, Nicosia MGLD, Cacciola SO, Droby S, Schena L (2015) Metabarcoding analysis of fungal diversity in the phyllosphere and carposphere of olive (Olea europaea). PLoS ONE 10(7), e0131069

    Article  PubMed  PubMed Central  Google Scholar 

  31. Abdelfattah A, Wisniewski M, Droby S, Schena L (2016) Spatial and compositional variation in the fungal communities of organic and conventionally grown apple fruit at the consumer point-of-purchase. Horticulture Research 3:16047

    Article  PubMed  PubMed Central  Google Scholar 

  32. Abdelfattah A, Wisniewski M, Li Destri Nicosia MG, Cacciola SO, Schena L (2016) Metagenomic analysis of fungal diversity on strawberry plants and the effect of management practices on the fungal community structure of aerial organs. PLoS ONE 11(8), e0160470. doi:10.1371/journal.pone.0160470

    Article  PubMed  PubMed Central  Google Scholar 

  33. Prigigallo MI, Abdelfattah A, Cacciola SO, Faedda R, Sanzani SM, Cooke DE, Schena L (2016) Metabarcoding analysis of Phytophthora diversity using genus-specific primers and 454 pyrosequencing. Phytopathology 106(3):305–313. doi:10.1094/PHYTO-07-15-0167-R

    Article  CAS  PubMed  Google Scholar 

  34. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Crous PW, Schoch CL, Hyde KD, Wood AR, Gueidan C, de Hoog GS, Groenewald JZ (2009) Phylogenetic lineages in the Capnodiales. Stud Mycol 64:17–47S17. doi:10.3114/sim.2009.64.02

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Réblová M, Untereiner WA, Réblová K (2013) Novel evolutionary lineages revealed in the Chaetothyriales (Fungi) based on multigene phylogenetic analyses and comparison of ITS secondary structure. PLoS ONE 8(5), e63547

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liu X-Y, Udayanga D, Luo Z-L, Chen L-J, Zhou D-Q, Su HY, Hyde KD (2015) Backbone tree for Chaetothyriales with four new species of Minimelanolocus from aquatic habitats. Fungal biology 119(11):1046–1062

    Article  PubMed  Google Scholar 

  38. Bensch K, Groenewald J, Braun U, Dijksterhuis J, de Jesús Y-MM, Crous P (2015) Common but different: the expanding realm of Cladosporium. Stud Mycol 82:23–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fonseca-Garcia C, Coleman-Derr D, Garrido E, Visel A, Tringe S, Partida-Martinez L (2015) The Cacti microbiome imterplay between habitat-filtering and host-specificity. Front Microbiol 7:150

    Google Scholar 

  40. Weir B, Johnston P, Damm U (2012) The Colletotrichum gloeosporioides species complex. Stud Mycol 73(1):115–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Damm U, Cannon P, Woudenberg J, Johnston P, Weir B, Tan Y, Shivas R, Crous P (2012) The Colletotrichum boninense species complex. Stud Mycol 73(1):1–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li W, Xiao Y, Wang C, Dang J, Chen C, Gao L, Batzer JC, Sun G, Gleason ML (2013) A new species of Devriesia causing sooty blotch and flyspeck on rubber trees in China. Mycol Prog 12(4):733–738. doi:10.1007/s11557-012-0885-z

    Article  Google Scholar 

  43. Mondal S, Timmer L (2003) Effect of urea, CaCO3, and dolomite on pseudothecial development and ascospore production of Mycosphaerella citri. Plant Dis 87(5):478–483

    Article  CAS  Google Scholar 

  44. Wolf FA (1912) The brown leaf spot of Colt’s Foot, Tussilago Farfara L. Annales Mycologici 10:65–67

    Google Scholar 

  45. Paulus AO (1990) Fungal diseases of strawberry. HortSci 25(8):885–889

    Google Scholar 

  46. Crous P, Wood A, Okada G, Groenewald J (2008) Foliicolous microfungi occurring on Encephalartos. Persoonia-Mol Phylogeny Evol Fungi 21(1):135–146

    Article  CAS  Google Scholar 

  47. Swart L, Crous P, Denman S, Palm M (1998) Fungi occurring on Proteaceae. I. S Afr J Bot 64(2):137–145

    Article  Google Scholar 

  48. Crous PW, Schubert K, Braun U, De Hoog G, Hocking A, Shin H-D, Groenewald J (2007) Opportunistic, human-pathogenic species in the Herpotrichiellaceae are phenotypically similar to saprobic or phytopathogenic species in the Venturiaceae. Stud Mycol 58:185–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bensch K, Braun U, Groenewald JZ, Crous PW (2012) The genus Cladosporium. Stud Mycol 72:1–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tashiro N, Noguchi M, Ide Y, Kuchiki F (2013) Sooty spot caused by Cladosporium cladosporioides in postharvest Satsuma mandarin grown in heated greenhouses. J Gen Plant Pathol 79(2):158–161

    Article  Google Scholar 

  51. Huang F, Chen G, Hou X, Fu Y, Cai L, Hyde K, Li H (2013) Colletotrichum species associated with cultivated citrus in China. Fungal Divers 61(1):61–74

    Article  Google Scholar 

  52. Benyahia H, Ifi A, Smaili C, Afellah M, Lamsetef Y, Timmer L (2003) First report of Colletotrichum gloeosporioides causing withertip on twigs and tear stain on fruit of citrus in Morocco. Plant Pathol 52(6):798–798

    Article  Google Scholar 

  53. Peng L, Yang Y, Hyde KD, Bahkali AH, Liu Z (2012) Colletotrichum species on citrus leaves in Guizhou and Yunnan provinces, China. Cryptogam Mycol 33(3):267–283

    Article  Google Scholar 

  54. McGovern RJ, Seijo TE, Hendricks K, Roberts PD (2012) New report of Colletotrichum gloeosporioides causing postbloom fruit drop on citrus in Bermuda. Can J Plant Pathol 34(2):187–194

    Article  Google Scholar 

  55. Moges AD, Admassu B, Belew D, Yesuf M, Njuguna J, Kyalo M, Ghimire SR (2016) Development of microsatellite markers and analysis of genetic diversity and population structure of Colletotrichum gloeosporioides from Ethiopia. PLoS ONE 11(3), e0151257

    Article  PubMed  PubMed Central  Google Scholar 

  56. Timmer LW, Garnsey SM, Graham JH (2000) Compendium of citrus diseases, 2nd edn. American Phytopathological Society (APS Press), St. Paul, MN

    Google Scholar 

  57. Rhaiem A, Taylor PWJ (2016) Colletotrichum gloeosporioides associated with anthracnose symptoms on citrus, a new report for Tunisia. Eur J Plant Pathol 146(1):219–224. doi:10.1007/s10658-016-0907-9

    Article  Google Scholar 

  58. Migheli Q, Cacciola SO, Balmas V, Pane A, Ezra D, Magnano di San Lio G (2009) Mal secco disease caused by Phoma tracheiphila: a potential threat to lemon production worldwide. Plant Dis 93(9):852–867

    Article  Google Scholar 

  59. Nigro F, Ippolito A, Salerno M (2011) Mal secco disease of citrus: a journey through a century of research. J Plant Pathol 93(3):523–560

    CAS  Google Scholar 

  60. Schena L, Mosca S, Cacciola S, Faedda R, Sanzani S, Agosteo G, Sergeeva V, Magnano di San Lio G (2014) Species of the Colletotrichum gloeosporioides and C. boninense complexes associated with olive anthracnose. Plant Pathol 63(2):437–446

    Article  CAS  Google Scholar 

  61. Mosca S, Li Destri Nicosia MG, Cacciola SO, Schena L (2014) Molecular analysis of Colletotrichum species in the carposphere and phyllosphere of olive. PLoS ONE 9(12), e114031. doi:10.1371/journal.pone.0114031

    Article  PubMed  PubMed Central  Google Scholar 

  62. Malacrinò A, Schena L, Campolo O, Laudani F, Palmeri V (2015) Molecular analysis of the fungal microbiome associated with the olive fruit fly Bactrocera oleae. Fungal Ecol 18:67–74, http://dx.doi.org/10.1016/j.funeco.2015.08.006

    Article  Google Scholar 

  63. Malacrinò A, Schena L, Campolo O, Laudani F, Mosca S, Giunti G, Strano CP, Palmeri V (2017) A Metabarcoding Survey on the Fungal Microbiota Associated to the Olive Fruit Fly. Microb Ecol. doi:10.1007/s00248-016-0864-z

Download references

Acknowledgments

This work was funded by the grant “Modelli sostenibili e nuove tecnologie per la valorizzazione delle filiere vegetali mediterranee” - PON Ricerca e competitività 2007-2013 (PON03PE_00090_03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Schena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelfattah, A., Cacciola, S.O., Mosca, S. et al. Analysis of the Fungal Diversity in Citrus Leaves with Greasy Spot Disease Symptoms. Microb Ecol 73, 739–749 (2017). https://doi.org/10.1007/s00248-016-0874-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0874-x

Keywords

Navigation