Skip to main content
Log in

Eukaryotic Community Shift in Response to Organic Loading Rate of an Aerobic Trickling Filter (Down-Flow Hanging Sponge Reactor) Treating Domestic Sewage

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

In this study, changes in eukaryotic community structure and water quality were investigated in an aerobic trickling filter (down-flow hanging sponge, DHS) treating domestic sewage under different organic loading rates (OLRs). The OLR clearly influenced both sponge pore water quality and relative flagellates and ciliates (free-swimming, carnivorous, crawling, and stalked protozoa) abundances in the retained sludge. Immediately after the OLR was increased from 1.05 to 1.97 kg chemical oxygen demand (COD) m−3 day−1, COD and NH4 +-N treatment efficiencies both deteriorated, and relative flagellates and ciliates abundances then increased from 2–8 % to 51–65 % total cells in the middle-bottom part of the DHS reactor. In a continuous operation at a stable OLR (2.01 kg COD m−3 day−1), effluent water quality improved, and relative flagellates and ciliates abundances decreased to 15–46 % total cells in the middle-bottom part of the DHS reactor. This result may indicate that flagellates and ciliates preferentially graze on dispersed bacteria, thus, stabilizing effluent water quality. Additionally, to investigate eukaryotic community structure, clone libraries based on the 18S ribosomal ribonucleic acid (rRNA) gene of the retained sludge were constructed. The predominant group was Nucletmycea phylotypes, representing approximately 29–56 % total clones. Furthermore, a large proportion of the clones had <97 % sequence identity in the NCBI database. This result indicates that phylogenetically unknown eukaryotes were present in the DHS reactor. These results provide insights into eukaryotic community shift in the DHS reactor treating domestic sewage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Canals O, Salvadó H, Auset M, Hernández C, Malfeito JJ (2013) Microfauna communities as performance indicators for A/O shortcut biological nitrogen removal moving-bed biofilm reactor. Water Res 47:3141–3150

    Article  CAS  PubMed  Google Scholar 

  2. Curds CR, Fey GJ (1969) The effect of ciliated protozoa on the fate of Escherichia coli in the activated-sludge process. Water Res 3:853–867

    Article  Google Scholar 

  3. Lapinski J, Tunnacliffe A (2003) Reduction of suspended biomass in municipal wastewater using bdelloid rotifers. Water Res 37:2027–2034

    Article  CAS  PubMed  Google Scholar 

  4. Ravva SV, Sarreal CZ, Mandrell RE (2010) Identification of protozoa in dairy lagoon wastewater that consume Escherichia coli O157: H7 preferentially. PLoS ONE 5(12):e15671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moreno AM, Matz C, Kjelleberg S, Manefield M (2010) Identification of ciliate grazers of autotrophic bacteria in ammonia-oxidizing activated sludge by RNA isotope probing. Appl Environ Microbiol 76(7):2203–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Evans TN, Seviour RJ (2012) Estimating biodiversity of fungi in activated sludge communities using culture-independent methods. Microbiol Ecol 63:773–786

    Article  Google Scholar 

  7. Matsunaga K, Kubota K, Harada H (2014) Molecular diversity of eukaryotes in municipal wastewater treatment processes as revealed by 18S rRNA gene analysis. Microbes Environ 29(4):401–407

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hayatsu M, Tago K, Saito M (2008) Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci Plant Nutr 54:33–45

    Article  CAS  Google Scholar 

  9. Baldrian P, Valášková V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32:501–521

    Article  CAS  PubMed  Google Scholar 

  10. Drake JF, Tsuchiya HM (1977) Growth kinetics of Colpoda steinii on Escherichia coli. Appl Environ Microbiol 34(1):18–22

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Taylor WD (1978) Growth responses of ciliate protozoa to the abundance of their bacterial prey. Microb Ecol 4:207–214

    Article  Google Scholar 

  12. Marsh TL, Liu WT, Forney LJ, Cheng H (1988) Beginning a molecular analysis of the eukaryal community in activated sludge. Water Sci Technol 37(4–5):455–460

    Google Scholar 

  13. Shimano S, Sanbe M, Kasahara Y (2008) Linkage between light microscopic observations and molecular analysis by single-cell PCR for ciliates. Microbes Environ 23(4):356–359

    Article  PubMed  Google Scholar 

  14. Shimano S, Sambe M, Kasahara Y (2012) Application of nested PCR-DGGE (denaturing gradient gel electrophoresis) for the analysis of ciliate communities in soils. Microbes Environ 27(2):136–141

    Article  PubMed  Google Scholar 

  15. Zhu F, Massana R, Not F, Marie D, Vaulot D (2005) Mapping of picoeukaryotes in marine ecosystem with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol 52:79–92

    Article  CAS  PubMed  Google Scholar 

  16. Machdar I, Harada H, Ohashi A, Sekiguchi Y, Okui H, Ueki K (1997) A novel and cost-effective sewage treatment system consisting of UASB pre-treatment and aerobic post-treatment units for developing countries. Water Sci Technol 36(12):189–197

    Article  CAS  Google Scholar 

  17. Uemura S, Harada H (2010) Application of UASB technology for sewage treatment with a novel post-treatment process. In: Fang HHP (ed) Environmental anaerobic technology. Imperial College Press, London, pp 91–112

    Chapter  Google Scholar 

  18. Agrawal LK, Ohashi Y, Mochida E, Okui H, Ueki Y, Harada H, Ohashi A (1997) Treatment of raw sewage in a temperate climate using a UASB reactor and the hanging sponge cubes process. Water Sci Technol 36(6–7):433–440

    Article  CAS  Google Scholar 

  19. Yoochatchaval W, Onodera T, Sumino H, Yamaguchi T, Mizuochi M, Okadera T, Syutsubo K (2014) Development of a down-flow hanging sponge reactor for the treatment of low-strength sewage. Water Sci Technol 70(4):656–663

    Article  CAS  PubMed  Google Scholar 

  20. Tawfik A, El-Gohary F, Ohashi A, Harada H (2006) The influence of physical-chemical and biological factors on the removal of faecal coliform through down-flow hanging sponge (DHS) system treating UASB reactor effluent. Water Res 40:1877–1883

    Article  CAS  PubMed  Google Scholar 

  21. Kubota K, Hayashi M, Matsunaga K, Iguchi A, Ohashi A, Li YY, Yamaguchi Y, Harada H (2014) Microbial community composition of a down-flow hanging sponge (DHS) reactor combined with an up-flow anaerobic sludge blanket (UASB) reactor for the treatment for the treatment of municipal sewage. Bioresour Technol 151:144–150

    Article  CAS  PubMed  Google Scholar 

  22. Onodera T, Matsunaga K, Kubota K, Taniguchi R, Harada H, Syutsubo K, Okubo T, Uemura S, Araki N, Yamada M, Yamauchi M, Yamaguchi T (2013) Characterization of the retained sludge in a down-flow hanging sponge (DHS) reactor with emphasis on its low excess sludge production. Bioresour Technol 136:169–175

    Article  CAS  PubMed  Google Scholar 

  23. Hatamoto M, Ohtsuki K, Maharjan N, Ono S, Dehama K, Sakamoto K, Takahashi M, Yamaguchi T (2016) Performance evaluation of the sulfur-redox-reaction-activated up-flow anaerobic sludge blanket and down-flow hanging sponge anaerobic/anoxic sequencing batch reactor system for municipal sewage treatment. Bioresour Technol 204:171–176

    Article  CAS  PubMed  Google Scholar 

  24. Lim EL, Amaral LA, Caron DA, DeLong EF (1993) Application of rRNA-based probes for observing marine nanoplanktonic protists. Appl Environ Microbiol 59(5):1647–1655

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Medlin L, Elwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71:491–499

    Article  CAS  PubMed  Google Scholar 

  26. Karnati SKR, Yu Z, Sylvester JT, Dehority BA, Morrison M, Firkins JL (2003) Technical note: specific PCR amplification of protozoal 18S rDNA sequence from DNA extracted from ruminal samples of cows. J Anim Sci 81:812–815

    Article  CAS  PubMed  Google Scholar 

  27. López-García P, Rodriguez-Valera F, Pedrós-Alió C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607

    Article  PubMed  Google Scholar 

  28. Pruesse E, Quast C, Knittel K, Fuch BM, Ludwig W, Peplies J, Glöckner O (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35(21):7188–7196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40:237–264

    Article  Google Scholar 

  30. Lara E, Moreira D, López-García P (2010) The environmental clade LKM11 and Rozella form the deepest branching clade of fungi. Protist 161:116–121

    Article  CAS  PubMed  Google Scholar 

  31. Brown MW, Spiegel FW, Silberman JD (2009) Phylogeny of the “forgotten” cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta. Mol Biol Evol 26(12):2699–2709

    Article  CAS  PubMed  Google Scholar 

  32. Weber SD, Hofmann A, Pilhofer M, Wanner G, Agerer R, Ludwig W, Schleifer KH, Fried J (2009) The diversity of fungi in aerobic sewage granules assessed by 18S rRNA gene and ITS sequence analyses. FEMS Microbiol Ecol 68:246–254

    Article  CAS  PubMed  Google Scholar 

  33. Syutsubo K, Yoochatchaval W, Tsushima I, Araki N, Kubota K, Onodera T, Takahashi M, Yamaguchi T, Yoneyama Y (2011) Evaluation of sludge properties in a pilot-scale UASB reactor for sewage treatment in a temperature region. Water Sci Technol 64(10):1959–1966

    Article  CAS  PubMed  Google Scholar 

  34. Madoni P (1994) Estimates of ciliated protozoa biomass in activated sludge and biofilm. Bioresour Technol 48:245–249

    Article  CAS  Google Scholar 

  35. Matz C, Kjelleberg S (2005) Off the hook—how bacteria survive protozoan grazing. Trends Microbiol 13(7):302–307

    Article  CAS  PubMed  Google Scholar 

  36. Pajdak-Stós A, Fiałkowska E, Fyda J, Babko R (2010) Resistance of nitrifiers inhabiting activated sludge to ciliate grazing. Water Sci Technol 61(3):573–580

    Article  PubMed  Google Scholar 

  37. Machdar I, Sekiguchi Y, Sumino H, Ohashi A, Harada H (2000) Combination of a UASB reactor and a curtain type DHS (downflow hanging sponge) reactor as a cost-effective sewage treatment system for developing countries. Water Sci Technol 42(3–4):83–88

    CAS  Google Scholar 

  38. Dubber D, Gray NF (2011) The effect of anoxia and anaerobia on ciliate community in biological nutrient removal system using laboratory-scale sequencing batch reactor. Water Res 45:2213–2226

    Article  CAS  PubMed  Google Scholar 

  39. Snaidr J, Amann R, Huber I, Ludwig W, Schleifer KH (1997) Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol 63(7):2884–2896

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Salvadó H, Grancia MP (1993) Determination of organic loading rate of activated sludge plants based on protozoan analysis. Water Res 27(5):891–895

    Article  Google Scholar 

  41. Liu J, Yang M, Qi R, An W, Zhou J (2008) Comparative study of protozoan communities in full-scale MWTPs in Beijing related to treatment processes. Water Res 42:1907–1918

    Article  CAS  PubMed  Google Scholar 

  42. Madoni P, Davoli D, Chierici E (1993) Comparative analysis of the activated sludge microfauna in several sewage treatment works. Water Res 27(9):1485–1491

    Article  CAS  Google Scholar 

  43. Zhou K, Xu M, Dai J, Cao H (2006) The microfauna communities and operational monitoring of an activated sludge plant in China. Eur J Protistol 42:291–295

    Article  PubMed  Google Scholar 

  44. Suarez C, Persson F, Hermansson M (2015) Predation of nitritation-anammox biofilms used for nitrogen removal from wastewater. FEMS Microbiol Ecol 91(11):1–9

    Article  Google Scholar 

  45. Okubo T, Onodera T, Uemura S, Yamaguchi T, Ohashi A, Harada H (2015) On-site evaluation of the performance of a full-scale down-flow hanging sponge reactor as a post-treatment process of an up-flow anaerobic sludge blanket reactor for treating sewage in India. Bioresour Technol 194:156–164

    Article  CAS  PubMed  Google Scholar 

  46. Tyagi VK, Subramaniyan S, Kazmi AA, Chopra AK (2008) Microbial community in conventional and extended aeration activated sludge plants in India. Ecol Indic 8(5):550–554

    Article  Google Scholar 

  47. Tsuruta S, Takaya N, Zhang L, Shoun H, Kimura K, Hamamoto M, Nakase T (1998) Denitrification by yeast and occurrence of cytochrome P450nor in Trichosporon cutanum. FEMS Microbiol Lett 168:105–110

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the staff at the municipal sewage works at Tsuchiura city, Ibaraki prefecture, Japan. This research is supported by NIES Issue-Oriented Research Program, the Japan Society for the Promotion of Science (KAKENHI Grant Number 15J10199), and Environment Research and Technology Development Fund (1-1603) of the Ministry of the Environment, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuaki Syutsubo.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 4532 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyaoka, Y., Hatamoto, M., Yamaguchi, T. et al. Eukaryotic Community Shift in Response to Organic Loading Rate of an Aerobic Trickling Filter (Down-Flow Hanging Sponge Reactor) Treating Domestic Sewage. Microb Ecol 73, 801–814 (2017). https://doi.org/10.1007/s00248-016-0871-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0871-0

Keywords

Navigation