Skip to main content
Log in

Yeast Diversity Associated with Invasive Dendroctonus valens Killing Pinus tabuliformis in China Using Culturing and Molecular Methods

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Bark beetle-associated yeasts are much less studied than filamentous fungi, yet they are also considered to play important roles in beetle nutrition, detoxification, and chemical communication. The red turpentine beetle, Dendroctonus valens, an invasive bark beetle introduced from North America, became one of the most destructive pests in China, having killed more than 10 million Pinus tabuliformis as well as other pine species. No investigation of yeasts associated with this bark beetle in its invaded ranges has been conducted so far. The aim of this study was to assess the diversity of yeast communities in different microhabitats and during different developmental stages of Den. valens in China using culturing and denaturing gradient gel electrophoresis (DGGE) approaches and to compare the yeast flora between China and the USA. The yeast identity was confirmed by sequencing the D1/D2 domain of LSU ribosomal DNA (rDNA). In total, 21 species (13 ascomycetes and eight basidiomycetes) were detected by culturing method, and 12 species (11 ascomycetes and one basidiomycetes) were detected by molecular methods from China. The most frequent five species in China were Candida piceae (Ogataea clade), Cyberlindnera americana, Candida oregonensis (Metschnikowia clade), Candida nitratophila (Ogataea clade) and an undescribed Saccharomycopsis sp., detected by both methods. Seven species were exclusively detected by DGGE. Ca. oregonensis (Metschnikowia clade) was the most frequently detected species by DGGE method. Eight species (all were ascomycetes) from the USA were isolated; seven of those were also found in China. We found significant differences in yeast total abundance as well as community composition between different developmental stages and significant differences between the surface and the gut. The frass yeast community was more similar to that of Den. valens surface or larvae than to the community of the gut or adults. Possible functions of the yeast associates are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adams AS, Adams SM, Currie CR, Gillette NE, Raffa KF (2010) Geographic variation in bacterial communities associated with the red turpentine beetle (Coleoptera: Curculionidae). Environ Entomol 39:406–414

    Article  PubMed  Google Scholar 

  2. Adams AS, Jordan MS, Adams SM, Suen G, Goodwin LA, Davenport KW, Currie CR, Raffa KF (2011) Cellulose-degrading bacteria associated with the invasive woodwasp Sirex noctilio. ISME J 5:1323–1331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Adams AS, Six DL, Adams SM, Holben WE (2008) In vitro interactions between yeasts and bacteria and the fungal symbionts of the mountain pine beetle (Dendroctonus ponderosae). Microb Ecol 56:460–466

    Article  PubMed  Google Scholar 

  4. Ali AH, Hipkin CR (1986) Nitrate assimilation in Candida nitratophila and other yeasts. Arch Microbiol 144:263–267

    Article  CAS  Google Scholar 

  5. Anderson IC, Cairney JW (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6:769–779

    Article  CAS  PubMed  Google Scholar 

  6. Ayres MP, Wilkens RT, Ruel JJ, Lombardero MJ, Vallery E (2000) Nitrogen budgets of phloem-feeding bark beetles with and without symbiotic fungi. Ecology 81:2198–2210

    Article  Google Scholar 

  7. Batra LR (1959) A comparative morphological and physiological study of the species of Dipodascus. Mycologia 51:329–355

    Article  CAS  Google Scholar 

  8. Batra LR (1967) Ambrosia fungi: a taxonomic revision, and nutritional studies of some species. Mycologia 59:976–1017

    Article  Google Scholar 

  9. Becher PG, Flick G, Rozpędowska E, Schmidt A, Hagman A, Lebreton S, Larsson MC, Hansson BS, Piškur J, Witzgall P, Bengtsson M (2012) Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Funct Ecol 26:822–828

    Article  Google Scholar 

  10. Boone CK, Six DL, Zheng Y, Raffa KF (2008) Parasitoids and dipteran predators exploit volatiles from microbial symbionts to locate bark beetles. Environ Entomol 37:150–161

    Article  PubMed  Google Scholar 

  11. Brand JM, Schultz J, Barras SJ, Edson LJ, Payne TL, Hedden RL (1977) Bark-beetle pheromones: enhancement of Dendroctonus frontalis (Coleoptera: Scolytidae) aggregation pheromone by yeast metabolites in laboratory bioassays. J Chem Ecol 3:657–666

    Article  CAS  Google Scholar 

  12. Bridges JR, Marler JE, McSparrin BH (1984) A quantitative study of the yeasts and bacteria associated with laboratory-reared Dendroctonus frontalis Zimm. (Coleopt., Scolytidae). Z Angew Entomol 97:261–267

    Article  Google Scholar 

  13. Bruce A, Stewart D, Verrall S, Wheatley RE (2003) Effect of volatiles from bacteria and yeast on the growth and pigmentation of sapstain fungi. Int Biodeterior Biodegrad 51:101–108

    Article  CAS  Google Scholar 

  14. Callaham RZ, Shifrine M (1960) The yeasts associated with bark beetles. For Sci 6:146–154

    Google Scholar 

  15. Chalutz E, Wilson CL (1990) Postharvest biocontrol of green and blue mold and sour rot of citrus fruit by Debaryomyces hansenii. Plant Dis 74:134–137

    Article  Google Scholar 

  16. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  17. Davis TS, Hofstetter RW (2011) Reciprocal interactions between the bark beetle-associated yeast Ogataea pini and host plant phytochemistry. Mycologia 103:1201–1207

    Article  CAS  PubMed  Google Scholar 

  18. Davis TS, Hofstetter RW, Foster JT, Foote NE, Keim P (2011) Interactions between the yeast Ogataea pini and filamentous fungi associated with the western pine beetle. Microb Ecol 61:626–634

    Article  PubMed  Google Scholar 

  19. Duong LM, Jeewon R, Lumyong S, Hyde KD (2006) DGGE coupled with ribosomal DNA gene phylogenies reveal uncharacterized fungal phylotypes. Fungal Divers 23:121–138

    Google Scholar 

  20. El Sheikha AF, Montet D (2011) Determination of fruit origin by using 28S rDNA fingerprinting of fungi communities by PCR-DGGE: an application to Physalis fruits from Egypt, Uganda and Colombia. Fruits 66:79–89

    Article  Google Scholar 

  21. Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371

    Article  CAS  PubMed  Google Scholar 

  22. Gábor P, Dlauchy D, Tornai-Lehoczki J, Kurtzman C (2005) Kuraishia molischiana sp. nov., the teleomorph of Candida molischiana. Antonie Van Leeuwenhoek 88:241–247

    Article  Google Scholar 

  23. Gibson CM, Hunter MS (2010) Extraordinarily widespread and fantastically complex: comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecol Lett 13:223–234

    Article  PubMed  Google Scholar 

  24. Giordano L, Garbelotto M, Nicolotti G, Gonthier P (2013) Characterization of fungal communities associated with the bark beetle Ips typographus varies depending on detection method, location, and beetle population levels. Mycol Prog 12:127–140

    Article  Google Scholar 

  25. Hakim RS, Baldwin K, Smagghe G (2010) Regulation of midgut growth, development, and metamorphosis. Annu Rev Entomol 55:593–608

    Article  CAS  PubMed  Google Scholar 

  26. Hammer Ø, Harper DA, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  27. Hesham AEL, Khan S, Liu X, Zhang Y, Wang Z, Yang M (2006) Application of PCR-DGGE to analyse the yeast population dynamics in slurry reactors during degradation of polycyclic aromatic hydrocarbons in weathered oil. Yeast 23:879–887

    Article  CAS  Google Scholar 

  28. Holst EC (1936) Zygosaccharomyces pini, a new species of yeast associated with bark beetles in pines. J Agric Res 53:513–518

    Google Scholar 

  29. Hunt DWA, Borden JH (1990) Conversion of verbenols to verbenone by yeasts isolated from Dendroctonus ponderosae (Coleoptera: Scolytidae). J Chem Ecol 16:1385–1397

    Article  CAS  PubMed  Google Scholar 

  30. Jones KG, Dowd PF, Blackwell M (1999) Polyphyletic origins of yeast-like endocytobionts from anobiid and cerambycid beetles. Mycol Res 103:542–546

    Article  Google Scholar 

  31. Kaltenpoth M (2009) Actinobacteria as mutualists: general healthcare for insects? Trends Microbiol 17:529–535

    Article  CAS  PubMed  Google Scholar 

  32. Khan ZU, Ahmad S, Hagen F, Fell JW, Kowshik T, Chandy R, Boekhout T (2010) Cryptococcus randhawai sp. nov., a novel anamorphic basidiomycetous yeast isolated from tree trunk hollow of Ficus religiosa (peepal tree) from New Delhi, India. Antonie Van Leeuwenhoek 97:253–259

    Article  CAS  PubMed  Google Scholar 

  33. Kurtzman CP (1984) Hansenula H et P Sydow. In: Kregervan Rij NJW (ed) The yeasts: a taxonomic study, 3rd edn. Elsevier Science, Amsterdam, pp 165–213

    Google Scholar 

  34. Kurtzman CP (1994) Molecular taxonomy of the yeasts. Yeast 10:1727–1740

    Article  CAS  PubMed  Google Scholar 

  35. Kurtzman CP (1998) Pichia EC Hansen emend Kurtzman. In: Kurtzman CP, Fell JW (eds) The yeasts: a taxonomic study, 4th edn. Elsevier Science, Amsterdam, pp 273–352

    Chapter  Google Scholar 

  36. Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts: a taxonomic study, 5th edn. Elsevier Science, Amsterdam

    Google Scholar 

  37. Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73:331–371

    Article  CAS  PubMed  Google Scholar 

  38. Leufvén A, Birgersson G (1987) Quantitative variation of different monoterpenes around galleries of Ips typographus (Colleoptera: Scolytidae) attacking Norway spruce. Can J Bot 65:1038–1044

    Article  Google Scholar 

  39. Leufvén A, Nehls L (1986) Quantification of different yeasts associated with the bark beetle, Ips typographus, during its attack on a spruce tree. Microb Ecol 12:237–243

    Article  PubMed  Google Scholar 

  40. Leufvén A, Bergström G, Falsen E (1984) Interconversion of verbenols and verbenone by identified yeasts isolated from the spruce bark beetle Ips typographus. J Chem Ecol 10:1349–1361

    Article  PubMed  Google Scholar 

  41. Leufvén A, Bergström G, Falsen E (1988) Oxygenated monoterpenes produced by yeasts, isolated from Ips typographus (Coleoptera: Scolytidae) and grown in phloem medium. J Chem Ecol 14:353–362

    Article  PubMed  Google Scholar 

  42. Lewinsohn D, Lewinsohn E, Bertagnolli CL, Patridge AD (1994) Blue-stain fungi and their transport structures on the Douglas-fir beetle. Can J For Res 24:2275–2283

    Article  Google Scholar 

  43. Lim YW, Kim JJ, Lu M, Breuil C (2005) Determining fungal diversity on Dendroctonus ponderosae and Ips pini affecting lodge pole pine using cultural and molecular methods. Fungal Divers 19:79–94

    Google Scholar 

  44. Litchman E (2010) Invisible invaders: non-pathogenic invasive microbes in aquatic and terrestrial ecosystems. Ecol Lett 13:1560–1572

    Article  PubMed  Google Scholar 

  45. Lu KC, Allen DG, Bollen WB (1957) Association of yeasts with the Douglas-fir beetle. For Sci 3:336–343

    Google Scholar 

  46. Lu M, Wingfield MJ, Gillette NE, Mori SR, Sun JH (2010) Complex interactions among host pines and fungi vectored by an invasive bark beetle. New Phytol 187:859–866

    Article  PubMed  Google Scholar 

  47. Lu M, Zhou XD, De Beer ZW, Wingfield MJ, Sun JH (2009) Ophiostomatoid fungi associated with the invasive pine-infesting bark beetle, Dendroctonus valens, in China. Fungal Divers 38:133–145

    CAS  Google Scholar 

  48. Morales-Jiménez J, Zúñiga G, Ramírez-Saad HC, Hernández-Rodríguez C (2012) Gut-associated bacteria throughout the life cycle of the bark beetle Dendroctonus rhizophagus Thomas and Bright (Curculionidae: Scolytinae) and their cellulolytic activities. Microb Ecol 64:268–278

    Article  PubMed  Google Scholar 

  49. Morales-Jiménez J, Zúñiga G, Villa-Tanaca L, Hernández-Rodríguez C (2009) Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae). Microb Ecol 58:879–891

    Article  PubMed  Google Scholar 

  50. Moran NA, Degnan PH, Santos SR, Dunbar HE, Ochman H (2005) The players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes. Proc Natl Acad Sci U S A 102:16919–16926

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Noda H, Koizumi Y (2003) Sterol biosynthesis by symbiotes: cytochrome P450 sterol C-22 desaturase genes from yeastlike symbiotes of rice planthoppers and anobiid beetles. Insect Biochem Mol Biol 33:649–658

    Article  CAS  PubMed  Google Scholar 

  52. Paine TD, Raffa KF, Harrington TC (1997) Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annu Rev Entomol 42:179–206

    Article  CAS  PubMed  Google Scholar 

  53. Person HL (1931) Theory in explanation of the selection of certain trees by the western pine beetle. J For 29:696–699

    CAS  Google Scholar 

  54. Persson Y, Vasaitis R, Långström B, Öhrn P, Ihrmark K, Stenlid J (2009) Fungi vectored by the bark beetle Ips typographus following hibernation under the bark of standing trees and in the forest litter. Microb Ecol 58:651–659

    Article  PubMed  Google Scholar 

  55. Popa V, Déziel E, Lavallée R, Bauce E, Guertin C (2012) The complex symbiotic relationships of bark beetles with microorganisms: a potential practical approach for biological control in forestry. Pest Manag Sci 68:963–975

    Article  CAS  PubMed  Google Scholar 

  56. Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62:142–160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Reuter M, Bell G, Greig D (2007) Increased outbreeding in yeast in response to dispersal by an insect vector. Curr Biol 17:R81–R83

    Article  CAS  PubMed  Google Scholar 

  58. Rivera FN, González E, Gόmez Z, Lόpez N, Hernández-Rodríguez C, Berkov A, Zúñiga G (2009) Gut-associated yeast in bark beetles of the genus Dendroctonus Erichson (Coleoptera: Curculionidae: Scolytinae). Biol J Linn Soc 98:325–342

    Article  Google Scholar 

  59. Schäfer A, Konrad R, Kuhnigk T, Kämpfer P, Hertel H, König H (1996) Hemicellulose-degrading bacteria and yeasts from the termite gut. J Appl Microbiol 80:471–478

    Google Scholar 

  60. Scorzetti G, Petrescu I, Yarrow D, Fell JW (2000) Cryptococcus adeliensis sp. nov., a xylanase producing basidiomycetous yeast from AntarctiCa. Antonie Van Leeuwenhoek 77:153–157

    Article  CAS  PubMed  Google Scholar 

  61. Shi Z, Sun JH (2010) Quantitative variation and biosynthesis of hindgut volatiles associated with the red turpentine beetle, Dendroctonus valens LeConte, at different attack phases. Bull Entomol Res 100:273–277

    Article  CAS  PubMed  Google Scholar 

  62. Shifrine M, Phaff HJ (1956) The association of yeasts with certain bark beetles. Mycologia 48:41–55

    Article  Google Scholar 

  63. Six DL, Klepzig KD (2004) Dendroctonus bark beetles as model systems for studies on symbiosis. Symbiosis 37:207–232

    Google Scholar 

  64. Six DL, Paine TD (1998) Effects of mycangial fungi and host tree species on progeny survival and emergence of Dendroctonus ponderosae (Coleoptera: Scolytidae). Environ Entomol 27:1393–1401

    Article  Google Scholar 

  65. Six DL, Wingfield MJ (2011) The role of phytopathogenicity in bark beetle-fungus symbioses: a challenge to the classic paradigm. Annu Rev Entomol 56:255–272

    Article  CAS  PubMed  Google Scholar 

  66. Strongman DB (1987) A method for rearing Dendroctonus ponderosae Hopk. (Coleoptera: Scolytidae) from eggs to pupae on host tissue with or without a fungal complement. Can Entomol 119:207–208

    Article  Google Scholar 

  67. Suh SO, Marshall CJ, Mchugh JV, Blackwell M (2003) Wood ingestion by passalid beetles in the presence of xylose-fermenting gut yeasts. Mol Ecol 12:3137–3145

    Article  PubMed  Google Scholar 

  68. Suh SO, Mchugh JV, Pollock DD, Blackwell M (2005) The beetle gut: a hyperdiverse source of novel yeasts. Mycol Res 109:261–265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Sun JH, Lu M, Gillette NE, Wingfield MJ (2013) Red turpentine beetle: innocuous native becomes invasive tree killer in China. Annu Rev Entomol 58:293–311

    Article  CAS  PubMed  Google Scholar 

  70. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Torto B, Boucias DG, Arbogast RT, Tumlinson JH, Teal PE (2007) Multitrophic interaction facilitates parasite–host relationship between an invasive beetle and the honey bee. Proc Natl Acad Sci 104:8374–8378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Vega FE, Blackburn MB, Kurtzman CP, Dowd PF (2003) Identification of a coffee berry borer-associated yeast: does it break down caffeine? Entomol Exp Appl 107:19–24

    Article  Google Scholar 

  74. Wang B, Lu M, Cheng C, Salcedo C, Sun JH (2013) Saccharide-mediated antagonistic effects of bark beetle fungal associates on larvae. Biol Lett 9:1–4

    Article  Google Scholar 

  75. Wang B, Salcedo C, Lu M, Sun JH (2012) Mutual interactions between an invasive bark beetle and its associated fungi. Bull Entomol Res 102:71–77

    Article  CAS  PubMed  Google Scholar 

  76. Wardlaw AM, Berkers TE, Man KC, Lachance MA (2009) Population structure of two beetle-associated yeasts: comparison of a New World asexual and an endemic Nearctic sexual species in the Metschnikowia clade. Antonie Van Leeuwenhoek 96:1–15

    Article  CAS  PubMed  Google Scholar 

  77. Whitney HS (1971) Association of Dendroctonus ponderosae (Coleoptera: Scolytidae) with blue stain fungi and yeasts during brood development in lodgepole pine. Can Entomol 103:1495–1503

    Article  Google Scholar 

  78. Whitney HS, Farris SH (1970) Maxillary mycangium in the mountain pine beetle. Science 167:54–55

    Article  CAS  PubMed  Google Scholar 

  79. Wickerham LJ (1965) New Heterothallic species of Hansenula II. Hansenula bimundalis and variety americana. Mycopathol Mycol Appl 26:87–103

    Article  Google Scholar 

  80. Wickerham LJ (1970) Hansenula H et P Sydow. In: Lodder J (ed) The yeasts: a taxonomic study, 2nd edn. North Holland, Amsterdam, pp 227–315

    Google Scholar 

  81. Witzgall P, Proffit M, Rozpedowska E, Becher PG, Andreadis S, Coracini M, Lindblom TUT, Ream LJ, Hagman A, Bengtsson M, Kurtzman CP, Piskur J, Knight A (2012) This is not an apple—yeast mutualism in codling moth. J Chem Ecol 38:949–957

    Article  PubMed  Google Scholar 

  82. Wu D, Daugherty SC, Van Aken SE, Pai GH, Watkins KL, Khouri H, Tallon LJ, Zaborsky JM, Dunbar HE, Tran PL, Moran NA, Eisen JA (2006) Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biol 4:e188

    Article  PubMed Central  PubMed  Google Scholar 

  83. Yan ZL, Sun JH, Don O, Zhang ZN (2005) The red turpentine beetle, Dendroctonus valens LeConte (Scolytidae): an exotic invasive pest of pine in China. Biodivers Conserv 14:1735–1760

    Article  Google Scholar 

  84. Zhao J, Bai F, Guo L, Jia J (2002) Rhodotorula pinicola sp. nov., a basidiomycetous yeast species isolated from xylem of pine twigs. FEMS Yeast Res 2:159–163

    CAS  PubMed  Google Scholar 

  85. Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Forestry Bureaus of Shanxi for their assistance in field study, Prof. Nancy E. Gillette (Pacific Southwest Research Station, U.S. Department of Agriculture Forest Service, California, USA) for her collecting of beetles in the USA, Prof. Xing-Zhong Liu (State Key Laboratory of Mycology, Institute of Microbiology, CAS, Beijing, China) for his help in yeast isolation and culturing, Dr. Jiri Hulcr (School of Forest Resources and Conservation, University of Florida, Florida, USA) and five anonymous reviewers for their revision, editing and valuable comments, and suggestions. This work was funded by the National Basic Research Program of China (2012CB114105), the National Natural Science Foundation of China (31110103903, 31222013, and 31170610).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang-Hua Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lou, QZ., Lu, M. & Sun, JH. Yeast Diversity Associated with Invasive Dendroctonus valens Killing Pinus tabuliformis in China Using Culturing and Molecular Methods. Microb Ecol 68, 397–415 (2014). https://doi.org/10.1007/s00248-014-0413-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0413-6

Keywords

Navigation