Skip to main content

Advertisement

Log in

Resource Use of Soilborne Streptomyces Varies with Location, Phylogeny, and Nitrogen Amendment

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

In this study, we explore variation in resource use among Streptomyces in prairie soils. Resource use patterns were highly variable among Streptomyces isolates and were significantly related to location, phylogeny, and nitrogen (N) amendment history. Streptomyces populations from soils less than 1 m apart differed significantly in their ability to use resources, indicating that drivers of resource use phenotypes in soil are highly localized. Variation in resource use within Streptomyces genetic groups was significantly associated with the location from which Streptomyces were isolated, suggesting that resource use is adapted to local environments. Streptomyces from soils under long-term N amendment used fewer resources and grew less efficiently than those from non-amended soils, demonstrating that N amendment selects for Streptomyces with more limited catabolic capacities. Finally, resource use among Streptomyces populations was correlated with soil carbon content and Streptomyces population densities. We hypothesize that variation in resource use among Streptomyces reflects adaptation to local resource availability and competitive species interactions in soil and that N amendments alter selection for resource use phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tilman D (1982) Resource competition and community structure, Monogr Pop Biol 17. Princeton University Press, Princeton

    Google Scholar 

  2. Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76

    Article  CAS  PubMed  Google Scholar 

  3. Tilman D (2004) Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc Natl Acad Sci U S A 101:10854–10861

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Barrett RDH, Craig MacLean R, Bell G (2005) Experimental evolution of Pseudomonas fluorescens in simple and complex environments. Am Nat 166:470–480

    Article  PubMed  Google Scholar 

  5. Schlatter D, Fubuh A, Xiao K, Hernandez D, Hobbie S, Kinkel L (2009) Resource amendments influence density and competitive phenotypes of Streptomyces in soil. Microb Ecol 57:413–420

    Article  PubMed  Google Scholar 

  6. Folman LB, Postma J, Veen JA (2001) Ecophysiological characterization of rhizosphere bacterial communities at different root locations and plant developmental stages of cucumber grown on rockwool. Microb Ecol 42:586–597

    Article  CAS  PubMed  Google Scholar 

  7. Craig MacLean R, Dickson A, Bell G (2005) Resource competition and adaptive radiation in a microbial microcosm. Ecol Letters 8:38–46

    Article  Google Scholar 

  8. Lawrence D, Fiegna F, Behrends V, Bundy JG, Phillimore AB, Bell T, Barraclough TG (2012) Species interactions alter evolutionary responses to a novel environment. PLoS Biol 10(5):e1001330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270

    Article  CAS  PubMed  Google Scholar 

  10. Fierer N, Bradford MA, Jackson RB (2007) Toward and ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  11. Wiggins BE, Kinkel LL (2005) Green manures and crop sequences influence alfalfa root rot and pathogen inhibitory activity among soil-borne streptomycetes. Plant Soil 286:271–283

    Article  Google Scholar 

  12. Wiggins BE, Kinkel LL (2005) Green manures and crop sequences influence potato diseases and pathogen inhibitory activity of indigenous streptomycetes. Phytopathol 95:178–185

    Article  CAS  Google Scholar 

  13. Clardy J, Fischbach MA, Walsh CT (2006) New antibiotics from bacterial natural products. Nature Biotechnol 24:1541–1550

    Article  CAS  Google Scholar 

  14. Hodgson DA (2000) Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Adv Microb Physiol 42:47–238

    Article  CAS  PubMed  Google Scholar 

  15. Williamson N, Brian P, Wellington EMH (2000) Molecular detection of bacterial and streptomycete chitinases in the environment. Antonie van Leeuwenhoek 78:315–321

    Article  CAS  PubMed  Google Scholar 

  16. Chater KF, Biró S, Lee KJ, Palmer T, Schrempf H (2010) The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 34:171–198

    Article  CAS  PubMed  Google Scholar 

  17. Schrempf H, Koebsch I, Walter S, Engelhardt H, Meschke H (2011) Extracellular Streptomyces vesicles: amphorae for survival and defence. Microb Biotechnol 4:286–299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Seipke RF, Kaltenpoth M, Hutchings MI (2011) Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol Rev 36:862–876

    Article  PubMed  Google Scholar 

  19. Kinkel LL, Schlatter DC, Bakker MG, Arenz BE (2012) Streptomyces competition and co-evolution in relation to disease suppression. Res Microbiol 163:490–499

    Article  PubMed  Google Scholar 

  20. Williams ST, Vickers JC (1986) The ecology of antibiotic production. Microb Ecol 12:43–52

    Article  CAS  PubMed  Google Scholar 

  21. Slattery M, Pajbhandari K, Wesson K (2001) Competition-mediated antibiotic induction in the marine bacterium Streptomyces tenjimariensis. Microb Ecol 41:90–96

    CAS  PubMed  Google Scholar 

  22. Davelos AL, Kinkel LL, Samac DA (2004) Spatial variation in frequency and intensity of antibiotic interactions among streptomycetes from prairie soil. Appl Environ Microbiol 70:1051–1058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Rigali S, Titgemeyer F, Barends S, Mulder S, Thomae AW, Hopwood DA, van Wezel GP (2008) Feast or famine: the global regulator DasR links resource stress to antibiotic production by Streptomyces. EMBO Reports 9:670–675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Sánchez S, Chávez A, Forero A, García-Huante Y, Romero A, Sánchez M, Rocha D, Sánchez B, Avalos M, Guzmán-Trampe S, Rodríguez-Sanoja R, Langley E, Ruiz B (2010) Carbon source regulation of antibiotic production. J Antibiot 63:442–459

    Article  PubMed  Google Scholar 

  25. Frey SD, Knorr M, Parrent JL, Simpson RT (2004) Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecol Man 196:159–171

    Article  Google Scholar 

  26. Knorr M, Frey SD, Curtis PS (2005) Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86:3252–3257

    Article  Google Scholar 

  27. Eisenlord SD, Zak DR (2010) Simulated atmospheric nitrogen deposition alters Actinobacterial community composition in forest soils. Soil Biol Biochem 74:1157–1166

    CAS  Google Scholar 

  28. Ramirez KS, Lauber CL, Knight R, Bradford MA, Fierer N (2010) Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology 91:3563–3470

    Article  Google Scholar 

  29. Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6:1007–1017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Ramirez KS, Craine JM, Fierer N (2012) Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Global Change Biol 18:1918–1927

    Article  Google Scholar 

  31. Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81:2359–2365

    Article  Google Scholar 

  32. Gallo M, Amonette R, Lauber C, Sinsabaugh RL, Zak DR (2004) Microbial community structure and oxidative enzyme activity in nitrogen-amended north temperate forest soils. Microb Ecol 48:218–229

    Article  CAS  PubMed  Google Scholar 

  33. Otto-Hanson LK, Grabau Z, Rosen C, Salomon CE, Kinkel LL (2013) Pathogen variation and urea influence selection and success of Streptomyces mixtures in biocontrol. Phytopathol 103:34–42

    Article  CAS  Google Scholar 

  34. Clark CM, Tilman D (2008) Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451:712–715

    Article  CAS  PubMed  Google Scholar 

  35. Davelos AL, Xiao K, Samac DA, Martin AP, Kinkel LL (2004) Spatial variation in Streptomyces genetic composition and diversity in a prairie soil. Microb Ecol 48:601–612

    Article  CAS  PubMed  Google Scholar 

  36. Takeuchi T, Sawada H, Tanaka F, Matsuda I (1996) Phylogenetic analysis of Streptomyces spp. causing potato scab based on 16S rRNA sequences. Int J Syst Bacteriol 46:467–469

    Google Scholar 

  37. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  38. Oksanen J, Blanchet G, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) vegan: community ecology package. R package version 2.0-2. http://CRAN.R-project.org/package=vegan

  39. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  40. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB et al (2009) Introducing mother: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Langenheder S, Székely AJ (2011) Species sorting and neutral processes are both important during the initial assembly of bacterial communities. ISME J 5:1086–1094

    Article  PubMed Central  PubMed  Google Scholar 

  42. Kassen R (2002) The experimental evolution of specialists, generalists, and the maintenance of diversity. J Evol Biol 15:173–190

    Article  Google Scholar 

  43. Antony-Babu S, Stach JEM, Goodfellow M (2008) Genetic and phenotypic evidence for Streptomyces griseus ecovars isolated from a beach and dune sand system. Antonie van Leeuwenhoek 94:63–74

    Article  CAS  PubMed  Google Scholar 

  44. Aldén L, Demoling F, Bååth E (2001) Rapid method of determining factors limiting bacterial growth in soil. Appl Environ Microbiol 67:1830–1838

    Article  PubMed Central  PubMed  Google Scholar 

  45. Kassen R, Rainey PB (2004) The ecology and genetics of microbial diversity. Annu Rev Microbiol 58:207–231

    Article  CAS  PubMed  Google Scholar 

  46. Czárán T, Hoekstra RF, Pagie L (2002) Chemical warfare between microbes promotes biodiversity. Proc Natl Acad Sci U S A 99:786–790

    Article  PubMed Central  PubMed  Google Scholar 

  47. Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Garbeva P, Tyc O, Remus-Emsermann MNP, van der Wal A, Vos M, Silby M, de Boer W (2011) No apparent costs for facultative antibiotic production by the soil bacterium Pseudomonas fluorescens Pf0-1. PLoS One 6:e27266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Lopez-Pascua LDC, Buckling A (2008) Increasing productivity accelerates host–parasite coevolution. J Evol Biol 21:853–860

    Article  CAS  PubMed  Google Scholar 

  50. Wloch-Salomon DM, Gerla D, Hoekstra RF, de Visser JAG (2008) Effect of dispersal and resource availability on the competitive ability of toxin-producing yeast. Proc Royal Soc B: Biol Sci 275:535–541

    Article  Google Scholar 

  51. Lopez-Pascua LDC, Brockhurst MA, Buckling A (2010) Antagonistic coevolution across productivity gradients: an experimental test of the effects of dispersal. J Evol Biol 23:207–211

    Article  CAS  PubMed  Google Scholar 

  52. Cohen MF, Mazzola M (2006) Resident bacteria, nitric oxide emission and particle size modulate the effect of Brassica napus seed meal on disease incited by Rhizoctonia solani and Pythium spp. Plant Soil 286:75–86

    Article  CAS  Google Scholar 

  53. Mazzola M, Zhao X (2010) Brassica juncea seed meal particle size influences chemistry but not soil biology-based suppression of individual agents inciting apple replant disease. Plant Soil 337:313–324

    Article  CAS  Google Scholar 

  54. Lenc L, Kwasna H, Sadowski C (2011) Dynamics of the root/soil pathogens and antagonists in organic and integrated production of potato. Eur J Plant Pathol 131:603–620

    Article  Google Scholar 

  55. Kinkel LL, Bakker MG, Schlatter DC (2011) A coevolutionary framework for managing disease-suppressive soils. Annu Rev Phytopathol 49:47–67

    Article  CAS  PubMed  Google Scholar 

  56. Bakker MG, Bradeen JM, Kinkel LL (2013) Effects of plant host species and plant community richness on streptomycete community structure. FEMS Microbiol Ecol 83:596–606

    Article  CAS  PubMed  Google Scholar 

  57. Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  58. De Deyn GB, Quirk H, Bardgett RD (2011) Plant species richness, identity and productivity differentially influence key groups of microbes in grassland soils of contrasting fertility. Biol Lett 7(1):75–78. doi:10.1098/rsbl.2010.0575

    Article  PubMed Central  PubMed  Google Scholar 

  59. Tilman D (1987) Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecol Monogr 57:189–214

    Article  Google Scholar 

  60. Craine JM, Morrow C, Fierer N (2007) Microbial nitrogen limitation increases decomposition. Ecology 88:2105–2113

    Article  PubMed  Google Scholar 

  61. Meier CL, Bowman WD (2008) Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proc Natl Acad Sci U S A 105:19780–19785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support for this research was provided by the National Science Foundation Microbial Observatories Project 9977907, United States Department of Agriculture Microbial Observatories Program Grant 2006-35319-17445, and the Minnesota Agricultural Experiment Station MIN-22-018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel C. Schlatter.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 37 kb)

ESM 2

(DOCX 2375 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlatter, D.C., DavelosBaines, A.L., Xiao, K. et al. Resource Use of Soilborne Streptomyces Varies with Location, Phylogeny, and Nitrogen Amendment. Microb Ecol 66, 961–971 (2013). https://doi.org/10.1007/s00248-013-0280-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0280-6

Keywords

Navigation