Skip to main content
Log in

Influence of the diet components on the symbiotic microorganisms community in hindgut of Coptotermes formosanus Shiraki

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 19 May 2006

Abstract

Artificial diet was developed for rearing of lower termites (workers) Coptotermes formosanus. C. formosanus was fed with either wood powder of Japanese red pine, cellulose, cellobiose, or glucose for 30 days. The effect of carbon sources in the diet on the structure and function of the symbiotic intestinal microbial community and on the physiological activity of C. formosanus was studied. Three symbiont protozoa, Pseudotrichonympha grassi, Holomastigotoides hartmanni, and Spirotrichonympha leidyi, were found in the hindgut of C. formosanus that fed on the diets containing carbon sources with high molecular weight (MW). However, when artificial diets containing carbohydrate with low MW were used, both P. grassi and H. hartmanni disappeared, and only few S. leidyi were alive. This suggested that both P. grassi and H. hartmanni play important roles in the digestion and utilization of carbohydrate with high MW. The denaturing gradient gel electrophoresis analysis of bacterial community in the hindgut of termites showed that the similarity between intestinal bacteria community in termites fed with diets containing high-MW carbon sources and those with low MW was only about 40%. It was apparent that changes in diets resulted to changes in intestinal microbial community, and this in turn affected cellulase activity in C. formosanus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmadjian V, Jacobs JB (1981) Relationship between fungus and alga in the lichen Cladonia cristatella Tuck. Nature 289:169–172

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database each programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  PubMed Central  CAS  Google Scholar 

  • Breznak JA (1982) Intestinal microbiota of termites and other xylophagous insects. Annu Rev Microbiol 36:323–343

    Article  CAS  Google Scholar 

  • Broderick NA, Raffa KF, Goodman RM, Handelsman J (2004) Census of bacterial community on the gypsy moth larval midgut by using culturing and culture-independent methods. Appl Environ Microbiol 70:293–300

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Eichner CA, Erb RW, Timmis KN, Wagner-Dobler I (1999) Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community. Appl Environ Microbiol 62:102–109

    Article  Google Scholar 

  • Hirsch AM, Lum MR, Downie JA (2001) What makes the rhizobia–legume symbiosis so special? Plant Physiol 127:1484–1492

    Article  CAS  Google Scholar 

  • Inoue T, Murashima K, Azuma J, Sugimoto A, Slaytor M (1997) Cellulose and xylan utilization in the lower termite Reticulitermes speratus. J Insect Physiol 43:235–242

    Article  CAS  Google Scholar 

  • Itakura S, Ueshima K, Tanaka H, Enoki A (1995) Degradation of wood components by subterranean termite, Coptotermes formosanus Shiraki. Mokuzai Gakkaishi 41:580–586

    CAS  Google Scholar 

  • Kyou K, Watanabe T, Yoshimura T, Takahashi M (1996) Lignin modification by termite and its symbiotic protozoa. Wood Res 83:50–54

    CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    Article  CAS  Google Scholar 

  • Ohkuma M (2003) Termite symbiotic systems: efficient bio-recycling of lignocellulose. Appl Microbiol Biotechnol 61:1–9

    Article  CAS  Google Scholar 

  • Ogino A, Koshikawa H, Nakahara T, Uchiyama H (2001) Succession of microbial communities during a biostimulation process as evaluated by DGGE and clone library analyses. J Appl Microbiol 91:625–635

    Article  CAS  Google Scholar 

  • Saito N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    Google Scholar 

  • Santo Domingo JW, Kaufman MG, Klug MJ, Holben WE, Harris D, Tiedje M (1998) Influence of diet on the structure and function of the bacterial hindgut community of crickets. Mol Ecol 7:761–767

    Article  Google Scholar 

  • Sekiguchi H, Watanabe M, Nakahara T, Xu B, Uchiyama H (2002) Succession of bacterial community structure along the Changjiang River determined by denaturing gradient gel electrophoresis and clone library analysis. Appl Environ Microbiol 68:5142–5150

    Article  CAS  Google Scholar 

  • Sorensen T (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content. Biol Skr (Cph) 4:1–34

    Google Scholar 

  • Tanaka H, Nakanishi M, Ogbonna JC, Ashihara Y, Yajima M (1993) Development of apparatus for cultivation of anaerobic microorganisms. Biotechnol Tech 7:189–192

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Trager W (1934) The cultivation of a cellulose-digesting flagellate, Trichomonas termopsidis, and of certain other termite protozoa. Biol Bull 66:182–190

    Article  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • Watanabe H, Tokuda G (2001) Animal cellulases. Cell Mol Life Sci 58:1167–1178

    Article  CAS  Google Scholar 

  • Watanabe H, Nakamura M, Tokuda G, Yamaoka I, Scrivener AM, Noda H (1997) Site of secretion and properties of endogenous endo-b-1,4-glucanase components from Reticulitermes speratus (Kolbe), a Japanese subterranean termite. Insect Biochem Mol Biol 27:305–313

    Article  CAS  Google Scholar 

  • Watanabe H, Noda H, Tokuda G, Lo N (1998) A cellulase gene of termite origin. Nature 394:330–331

    Article  CAS  Google Scholar 

  • Yamaoka I (1979) Selective ingestion of food by termite protozoa, Trichonympha agilis. Zoo Mag 88:174–179

    Google Scholar 

  • Yamaoka I, Nagatani Y (1975) Cellulose digestion system in termite, Reticulitermes speratus (Kolbe). I. Producing site and physiological significance of two kinds of cellulase in the worker. Zoo Mag 84:23–29

    Google Scholar 

  • Yamaoka I, Nagatani Y (1977) Cellulose digestion system in termite, Reticulitermes speratus (Kolbe). II. Ultra structural changes related to the ingestion and digestion of cellulose by flagellate, Trichonympha agilis. Zoo Mag 86:34–42

    Google Scholar 

  • Yoshimura T, Azuma J, Tsunoda K, Takahashi M (1993a) Cellulose metabolism of the symbiotic protozoa in termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). I. Effect of degree of polymerization of cellulose. Mokuzai Gakkaishi 39:221–226

    CAS  Google Scholar 

  • Yoshimura T, Azuma J, Tsunoda K, Takahashi M (1993b) Cellulose metabolism of the symbiotic protozoa in termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). II. Selective defaunation of protozoa and its effect on cellulose metabolism. Mokuzai Gakkaishi 39:227–230

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a Grant-in-Aid for Scientific Research A (no. 16208017) from the Japan Society for the Promotion of Science (JSPS), a Grant-in-Aid for Exploratory Research (no. 16651032), and The 21st Century COE Program from the Ministry of Education, Culture Sports, Science and Technology (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Tanaka.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00253-006-0415-5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, H., Aoyagi, H., Shina, S. et al. Influence of the diet components on the symbiotic microorganisms community in hindgut of Coptotermes formosanus Shiraki. Appl Microbiol Biotechnol 71, 907–917 (2006). https://doi.org/10.1007/s00253-005-0215-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0215-3

Keywords

Navigation