Skip to main content

Advertisement

Log in

Drug Discovery from Marine Microbes

  • Minireviews
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The marine environment has been a source of more than 20,000 inspirational natural products discovered over the past 50 years. From these efforts, 9 approved drugs and 12 current clinical trial agents have been discovered, either as natural products or as molecules inspired from the natural product structure. To a significant degree, these have come from collections of marine invertebrates largely obtained from shallow-water tropical ecosystems. However, there is a growing recognition that marine invertebrates are oftentimes populated with enormous quantities of “associated” or symbiotic microorganisms and that microorganisms are the true metabolic sources of these most valuable of marine natural products. Also, because of the inherently multidisciplinary nature of this field, a high degree of innovation is characteristic of marine natural product drug discovery efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Blunt J, Munro M, Upjohn M (2012) The role of databases in marine natural products research. In: Fattorusso E, Gerwick WH, Taglialatela-Scafati O (eds) Handbook of marine natural products, 1st edn. Springer, Dordrecht, pp 389–421

    Chapter  Google Scholar 

  2. Gerwick WH, Moore BS (2012) Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol 19:85–98

    Article  PubMed  CAS  Google Scholar 

  3. Mayer AMS, Glaser KB, Cuevas C, Jacobs RS, Kem W, Little RD, McIntosh JM, Newman DJ, Potts BC, Shuster DE (2010) The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol Sci 31:255–265

    Article  PubMed  CAS  Google Scholar 

  4. Newman DJ, Cragg GM (2010) Natural products derivatives and mimics as antitumor agents. In: Wrigley S, Thomas R, Nicholson N, Bedford C (eds) Functional molecules from natural sources. RSC, Cambridge, pp 3–36

    Google Scholar 

  5. Lichter W, Lopez DM, Wellham LL, Sigel MM (1975) Ecteinascidia turbinata extracts inhibit DNA synthesis in lymphocytes after mitogenic stimulation by lectins. Proc Soc Exp Biol Med 150:475–478

    PubMed  CAS  Google Scholar 

  6. Rinehart KL, Holt TG, Fregeau NL, Stroh JG, Keifer PA, Sun F, Li LH, Martin DG (1990) Ecteinascidins 729 743 745 759A 759B and 770: potent antitumor agents from the Caribbean tunicate Ecteinascidia turbinate. J Org Chem 55:4512–4215

    Article  CAS  Google Scholar 

  7. Wright AE, Forleo DA, Gunawardana GP, Gunasekera SP, Koehn FE, McConnell OJ (1990) Antitumor tetrahydroisoquinoline alkaloids from the colonial ascidian Ecteinascidia turbinate. J Org Chem 55:4508–4512

    Article  CAS  Google Scholar 

  8. Mendola D, Naranjo L, Santiago A, Duckworth AR, Osinga R (2006) The promise of aquaculture for delivering sustainable supplies of new drugs from the sea: examples from in-sea and tank-based invertebrate culture projects from around the world. In: Proksch P, Müller WEG (eds) Frontiers in marine biotechnology. Horizon Bioscience, Norwich, pp 21–72

    Google Scholar 

  9. Corey EJ, Gin DY, Kania RS (1996) Enantioselective total synthesis of ecteinascidin 743. J Am Chem Soc 118:9202–9203

    Article  CAS  Google Scholar 

  10. Cuevas C, Pérez M, Martín MJ, Chicharro JL, Fernández-Rivas C, Flores M, Francesch A, Gallego P, Zarzuelo M, de la Calle F, García J et al (2000) Synthesis of ecteinascidin ET-743 and phthalascidin Pt-650 from cyanosafracin B. Org Lett 2:2545–2548

    Article  PubMed  CAS  Google Scholar 

  11. Rath CM, Janto B, Earl J, Ahmed A, Hu FZ, Hiller L, Dahlgren M, Kreft R, Yu F, Wolff JJ et al (2011) Meta-omic characterization of the marine invertebrate microbial consortium that produces the chemotherapeutic natural product ET-743. ACS Chem Biol 6:1244–1256

    Article  PubMed  CAS  Google Scholar 

  12. Scotto KW (2002) ET-743: more than an innovative mechanism of action. Anti-Cancer Drugs 13:S3–S6

    Article  PubMed  CAS  Google Scholar 

  13. Pettit GR, Kamano Y, Herald CL, Tuinman AA, Boettner FE, Kizu H, Schmidt JM, Baczynskyj L, Tomer KB, Bontems RJ (1987) The isolation and structure of a remarkable marine animal antineoplastic constituent: dolastatin 10. J Am Chem Soc 109:6883–6885

    Article  CAS  Google Scholar 

  14. Hamel E (1993) Potent new antimitotic natural products from marine animals which act in the vinca domain of tubulin. Cell Pharm 1:S47–S52

    CAS  Google Scholar 

  15. Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH (2001) Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod 64:907–910

    Article  PubMed  CAS  Google Scholar 

  16. Pitot HC, McElroy EA Jr, Reid JM, Windebank AJ, Sloan JA, Erlichman C, Bagniewski PG, Walker DL, Rubin J, Goldberg RM et al (1999) Phase I trial of dolastatin-10 (NSC 376128) in patients with advanced solid tumors. Clin Cancer Res 5:525–531

    PubMed  CAS  Google Scholar 

  17. Senter PD, Sievers EL (2012) The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat Biotech 30:631–637

    Article  CAS  Google Scholar 

  18. Hirata Y, Uemura D (1986) Halichondrins-antitumor polyether macrolides from a marine sponge. Pure Appl Chem 58:701–710

    Article  CAS  Google Scholar 

  19. Munro MHG, Blunt JW, Dumdei EJ, Hickford SJH, Lill RE, Li S, Battershill CN, Duckworth AR (1999) The discovery and development of marine compounds with pharmaceutical potential. Prog Indus Micro 35:15–25

    Article  CAS  Google Scholar 

  20. Yu MJ, Zheng W, Seletsky BM, Littlefield BA, Kishi Y (2011) Case history: discovery of eribulin (HALAVEN), a halichondrin B analogue that prolongs overall survival in patients with metastatic breast cancer. Ann Rep Med Chem 46:227–241

    Article  CAS  Google Scholar 

  21. Goel S, Mita AC, Mita M, Rowinsky EK, Chu QS, Wong N, Desjardins C, Fang F, Jansen M, Shuster DE et al (2009) A phase I study of eribulin mesylate (E7389), a mechanistically novel inhibitor of microtubule dynamics, in patients with advanced solid malignancies. Clin Cancer Res 15:4207–4212

    Article  PubMed  CAS  Google Scholar 

  22. Towle MJ, Nomoto K, Asano M, Kishi Y, Yu MJ, Littlefield BA (2012) Broad spectrum preclinical antitumor activity of eribulin (Halaven(R)): optimal effectiveness under intermittent dosing conditions. Anticancer Res 32:1611–1619

    PubMed  CAS  Google Scholar 

  23. Jones AC, Monroe EA, Eisman E, Gerwick L, Sherman DH, Gerwick WH (2010) The unique mechanistic transformations involved in the biosynthesis of modular natural products from marine cyanobacteria. Nat Prod Rep 27:1048–1065

    Article  PubMed  CAS  Google Scholar 

  24. Potts BC, Albitar MX, Anderson KC, Baritaki S, Berkers C, Bonavida B, Chandra J, Chauhan D, Cusack JC Jr, Fenical W et al (2011) Marizomib, a proteasome inhibitor for all seasons: preclinical profile and a framework for clinical trials. Curr Cancer Drug Targets 11:254–284

    Article  CAS  Google Scholar 

  25. Groll M, Huber R, Potts BC (2006) Crystal structures of salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20S proteasome reveal important consequences of β-lactone ring opening and a mechanism for irreversible binding. J Am Chem Soc 128:5136–5141

    Article  PubMed  CAS  Google Scholar 

  26. Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2:666–673

    Article  PubMed  CAS  Google Scholar 

  27. Chang F-Y, Brady SF (2011) Cloning and characterization of an environmental DNA-derived gene cluster that encodes the biosynthesis of the antitumor substance BE-54017. J Am Chem Soc 133:9996–9999

    Article  PubMed  CAS  Google Scholar 

  28. Guthals A, Watrous JD, Dorrestein PC, Bandeira N (2012) The spectral networks paradigm in high throughput mass spectrometry. Mol BioSys 8:2535–2544

    Article  CAS  Google Scholar 

  29. Swinney DC, Anthony J (2011) How were new medicines discovered? Nat Rev Drug Discov 10:507–519

    Article  PubMed  CAS  Google Scholar 

  30. Penrod NM, Cowper-Sal-lari R, Moore JH (2011) Systems genetics for drug target discovery. Trends Pharm Sci 32:623–630

    Article  PubMed  CAS  Google Scholar 

  31. Pawlik JR (2011) The chemical ecology of sponges on Caribbean reefs: natural products shape natural systems. BioScience 61:888–898

    Article  Google Scholar 

Download references

Acknowledgments

Research in the author’s laboratory is supported by NIH grants CA100851, TW006634, CA108874, and NS053398. We thank an anonymous reviewer for the helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. Gerwick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerwick, W.H., Fenner, A.M. Drug Discovery from Marine Microbes. Microb Ecol 65, 800–806 (2013). https://doi.org/10.1007/s00248-012-0169-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0169-9

Keywords

Navigation