Skip to main content

Advertisement

Log in

The Diversity and Abundance of Bacteria and Oxygenic Phototrophs in Saline Biological Desert Crusts in Xinjiang, Northwest China

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Although microorganisms, particularly oxygenic phototrophs, are known as the major players in the biogeochemical cycles of elements in desert soil ecosystems and have received extensive attention, still little is known about the effects of salinity on the composition and abundances of microbial community in desert soils. In this study, the diversity and abundance of bacteria and oxygenic phototrophs in biological desert crusts from Xinjiang province, which were under different salinity conditions, were investigated by using clone library and quantitative PCR (qPCR). The 16S rRNA gene phylogenetic analysis showed that cyanobacteria, mainly Microcoleus vagnitus of the order Oscillatoriales, were predominant in the low saline crusts, while other phototrophs, such as diatom, were the main microorganism group responsible for the oxygenic photosynthesis in the high saline crusts. Furthermore, the higher salt content in crusts may stimulate the growth of other bacteria, including Deinococcus-Thermus, Bacteroidetes, and some subdivisions of Proteobacteria (β-, γ-, and δ-Proteobacteria). The cpcBA-IGS gene analysis revealed the existence of novel M. vagnitus strains in this area. The qPCR results showed that the abundance of oxygenic phototrophs was significantly higher under lower saline condition than that in the higher saline crusts, suggesting that the higher salinity in desert crusts could suppress the numbers of total bacteria and phototrophic bacteria but did highly improve the diversity of salt-tolerant bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Belnap J, Lange OL (2001) Structure and functioning of biological soil crusts: a synthesis. In: Ecological Studies. Biological soil crusts: structure, function, and management, vol 150. Ecological Studies. pp 471–479

  2. Nagy ML, Perez A, Garcia-Pichel F (2005) The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument, AZ). FEMS Microbiol Ecol 54(2):233–245. doi:10.1016/j.femsec.2005.03.011

    Article  PubMed  CAS  Google Scholar 

  3. Davis WL, de Pater I, McKay CP (2010) Rain infiltration and crust formation in the extreme arid zone of the Atacama Desert, Chile. Planet Space Sci 58(4):616–622. doi:10.1016/j.pss.2009.08.011

    Article  CAS  Google Scholar 

  4. Garcia-Pichel F, Lopez-Cortes A, Nubel U (2001) Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl Environ Microbiol 67(4):1902

    Article  PubMed  CAS  Google Scholar 

  5. Belnap J, Gardner JS (1993) Soil microstructure in soils of the Colorado Plateau: the role of the cyanobacterium Microcoleus vaginatus. West North Am Nat 53(1):40–47

    Google Scholar 

  6. Eldridge DJ, Greene RSB (1994) Microbiotic soil crusts—a review of their roles in soil and ecological processes in the rangelands of Australia. Aust J Soil Res 32(3):389–415. doi:10.1071/sr9940389

    Article  Google Scholar 

  7. Belnap J, Gillette DA (1998) Vulnerability of desert biological soil crusts to wind erosion: the influences of crust development, soil texture, and disturbance. J Arid Environ 39(2):133–142. doi:10.1006/jare.1998.0388

    Article  Google Scholar 

  8. Chen LZ, Li DH, Song LR, Hu CX, Wang GH, Liu YD (2006) Effects of salt stress on carbohydrate metabolism in desert soil alga Microcoleus vaginatus Gom. J Integr Plant Biol 48(8):914–919

    Article  CAS  Google Scholar 

  9. Garcia-Pichel F, Johnson S, Youngkin D, Belnap J (2003) Small-scale vertical distribution of bacterial biomass and diversity in biological soil crusts from arid lands in the Colorado Plateau. Microb Ecol 46(3):312–321

    Article  PubMed  CAS  Google Scholar 

  10. Pointing SB, Warren-Rhodes KA, Lacap DC, Rhodes KL, McKay CP (2007) Hypolithic community shifts occur as a result of liquid water availability along environmental gradients in China’s hot and cold hyperarid deserts. Environ Microbiol 9(2):414–424

    Article  PubMed  CAS  Google Scholar 

  11. Gundlapally SR, Garcia-Pichel F (2006) The community and phylogenetic diversity of biological soil crusts in the Colorado Plateau studied by molecular fingerprinting and intensive cultivation. Microb Ecol 52(2):345–357. doi:10.1007/s00248-006-9011-6

    Article  PubMed  Google Scholar 

  12. Abed RMM, Al Kharusi S, Schramm A, Robinson MD (2010) Bacterial diversity, pigments and nitrogen fixation of biological desert crusts from the Sultanate of Oman. FEMS Microbiol Ecol 72(3):418–428. doi:10.1111/j.1574-6941.2010.00854.x

    Article  PubMed  CAS  Google Scholar 

  13. Belnap J (2002) Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biol Fertil Soils 35(2):128–135

    Article  CAS  Google Scholar 

  14. Evans R, Johansen J (1999) Microbiotic crusts and ecosystem processes. Crit Rev Plant Sci 18(2):183–225

    Article  Google Scholar 

  15. Chanal A, Chapon V, Benzerara K, Barakat M, Christen R, Achouak W, Barras F, Heulin T (2006) The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environ Microbiol 8(3):514–525

    Article  PubMed  CAS  Google Scholar 

  16. Warren-Rhodes KA, Rhodes KL, Boyle LN, Pointing SB, Chen Y, Liu S, Zhuo P, McKay CP (2007) Cyanobacterial ecology across environmental gradients and spatial scales in China’s hot and cold deserts. FEMS Microbiol Ecol 61(3):470–482

    Article  PubMed  CAS  Google Scholar 

  17. Lan S, Wu L, Zhang D, Hu C, Liu Y (2010) Effects of drought and salt stresses on man-made cyanobacterial crusts. Eur J Soil Biol 46(6):381–386

    Article  Google Scholar 

  18. Wang Y, Xiao D, Li Y (2007) Temporal–spatial change in soil degradation and its relationship with landscape types in a desert–oasis ecotone: a case study in the Fubei region of Xinjiang Province, China. Environ Geol 51(6):1019–1028

    Article  Google Scholar 

  19. Xie J, Li Y, Zhai C, Li C, Lan Z (2009) CO(2) absorption by alkaline soils and its implication to the global carbon cycle. Environ Geol 56(5):953–961. doi:10.1007/s00254-008-1197-0

    Article  CAS  Google Scholar 

  20. Schumaher BA (2002) Methods for the determination of total organic carbon (TOC) in soils and sediments. United States Environmental Protection Agency, Ecological Risk Assesment Support Center, Office of Research and Development, Las Vegas

  21. Page AL, Miller RH, Keeney DR (1982) Methods of soil analyses. Part 2. Chemical and microbiological properties. Second edition. American Society of Agronomy, Madison, Wisconsin, USA.

  22. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  PubMed  CAS  Google Scholar 

  23. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    Article  PubMed  CAS  Google Scholar 

  24. Bates ST, Garcia Pichel F (2009) A culture independent study of free living fungi in biological soil crusts of the Colorado Plateau: their diversity and relative contribution to microbial biomass. Environ Microbiol 11(1):56–67

    Article  PubMed  CAS  Google Scholar 

  25. Steven B, Gallegos-Graves LV, Starkenburg SR, Chain PS, Kuske CR (2012) Targeted and shotgun metagenomic approaches provide different descriptions of dryland soil microbial communities in a manipulated field study. Environ Microbiol Rep 4(2):248–256. doi:10.1111/j.1758-2229.2012.00328.x

    Article  Google Scholar 

  26. Steppe TF, Olson JB, Paerl HW, Litaker RW, Belnap J (1996) Consortial N-2 fixation: a strategy for meeting nitrogen requirements of marine and terrestrial cyanobacterial mats. FEMS Microbiol Ecol 21(3):149–156. doi:10.1111/j.1574-6941.1996.tb00342.x

    Article  CAS  Google Scholar 

  27. Johnson SL, Budinoff CR, Belnap J, Garcia-Pichel F (2005) Relevance of ammonium oxidation within biological soil crust communities. Environ Microbiol 7(1):1–12. doi:10.1111/j.1462-2920.2004.00649.x

    Article  PubMed  CAS  Google Scholar 

  28. Nübel U, Garcia Pichel F, Clavero E, Muyzer G (2000) Matching molecular diversity and ecophysiology of benthic cyanobacteria and diatoms in communities along a salinity gradient. Environ Microbiol 2(2):217–226

    Article  PubMed  Google Scholar 

  29. Sørensen KB, Canfield DE, Teske AP, Oren A (2005) Community composition of a hypersaline endoevaporitic microbial mat. Appl Environ Microbiol 71(11):7352–7365

    Article  PubMed  Google Scholar 

  30. Rainey FA, Ray K, Ferreira M, Gatz BZ, Nobre MF, Bagaley D, Rash BA, Park MJ, Earl AM, Shank NC (2005) Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 71(9):5225–5235

    Article  PubMed  CAS  Google Scholar 

  31. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–147

    Google Scholar 

  32. Nubel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63(8):3327

    PubMed  CAS  Google Scholar 

  33. Neilan BA, Jacobs D, Goodman AE (1995) Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Appl Environ Microbiol 61(11):3875

    PubMed  CAS  Google Scholar 

  34. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05030500) and the Dean Fund of Graduate University of Chinese Academy of Sciences 2011B (Y15102FN00). We thank all the staff at Fukang Station of Desert Ecology for their invaluable help in field sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, K., Liu, R., Zhang, H. et al. The Diversity and Abundance of Bacteria and Oxygenic Phototrophs in Saline Biological Desert Crusts in Xinjiang, Northwest China. Microb Ecol 66, 40–48 (2013). https://doi.org/10.1007/s00248-012-0164-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0164-1

Keywords

Navigation