Skip to main content
Log in

Effects of Elevated CO2 on Communities of Denitrifying Bacteria and Methanogens in a Temperate Marsh Microcosm

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The effects of elevated CO2 on soil bacterial community with upland vegetation have been widely studied, but limited information is available regarding responses of denitrifier and methanogen communities to elevated CO2 in wetland ecosystems. Using restriction fragment length polymorphism (RFLP), terminal RFLP analysis, and real-time quantitative PCR, we compared communities of denitrifiers and methanogens in a laboratory-scale wetland system planted with one of three macrophytes, Typha latifolia, Scirpus lacustris, or Juncus effusus, after 110 days of incubation. Our study showed that elevated CO2 could affect community structures of both denitrifiers and methanogens, each of which had a unique response pattern. In particular, elevated CO2 shifted nirS-containing community with a unique structure irrespective of vegetation type. mcrA-containing community appeared to shift to community with unique types of hydrogenotrophs under elevated CO2 conditions. The change of dissolved organic carbon driven by elevated CO2 appeared to be related with the shift of both denitrifiers and methanogens. Overall, this study indicates that elevated CO2 could change the community structure of denitrifiers and methanogens temporarily. These results also suggest a presence of stable dominant populations that were not substantially affected by changes in CO2 concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Avrahami S, Conrad R, Braker G (2002) Effect of soil ammonium concentration on N2O release and on the community structure of ammonia oxidizers and denitrifiers. Appl Environ Microbiol 68:5685–5692

    Article  PubMed  CAS  Google Scholar 

  2. Baggs EM, Richter M, Cadisch G, Hartwig UA (2003) Denitrification in grass swards is increased under elevated atmospheric CO2. Soil Biol Biochem 35:729–732

    Article  CAS  Google Scholar 

  3. Barnard R, Leadley PW, Hungate BA (2005) Global change, nitrification, and denitrification: a review. Glob Giogeochem Cyles 19

  4. Billings SA, Ziegler SE (2005) Linking microbial activity and soil organic matter transformations in forest soils under elevated CO2. Global Change Biol 11:203–212

    Article  Google Scholar 

  5. Braker G, Fesefeldt A, Witzel K-P (1998) Development of PCR primer system for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl Environ Microbiol 64:3796–3775

    Google Scholar 

  6. Brussaarda L, de Ruiterb PC, Brown GG (2007) Soil biodiversity for agricultural sustainability. Agric Ecosyst Environ 121:233–244

    Article  Google Scholar 

  7. Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW (2010) Soil microbial community response to multiple experimental climate change drivers. Appl Environ Microbiol 76:999–1007

    Article  PubMed  CAS  Google Scholar 

  8. Cavigelli M, Robertson GP (2000) The functional significance of denitrifier community composition in terrestrial ecosystem. Ecology 81:1402–1414

    Article  Google Scholar 

  9. Cavigelli M, Robertson GP (2001) Role of denitrifier diversity in rates of nitrous oxide consumption in a terrestrial ecosystem. Soil Biol Biochem 33:297–310

    Article  CAS  Google Scholar 

  10. Conrad R (2006) Microbial ecology of methanogens and methanotrophs. Adv Agron 96:1–63

    Article  Google Scholar 

  11. Day FP, Weber EP, Hinkle CR, Drake BG (2000) Effects of elevated CO2 on fine root length and distribution in an oak-palmetto scrub ecosystem in central Florida. Global Change Biol 2:143–148

    Article  Google Scholar 

  12. Deiglmayr K, Philippot L, Hartwig UA, Kandeler E (2004) Structure and activity of the nirate-reducing community in the rhizosphere of Lolium perenne and Trifolium repens under long-term elevated atmospheric pCO2. FEMS Microb Ecol 49:445–454

    Article  CAS  Google Scholar 

  13. Dilly O, Bloem J, Vos A, Munch JC (2004) Bacterial diversity in agricultural soils during litter decomposition. Appl Environ Microbiol 70:468–474

    Article  PubMed  CAS  Google Scholar 

  14. Drigo B, van Veen JA, Kowalchuk G (2009) Specific rhizosphere bacterial and fungal groups respond differently to elevated atmosphere CO2. The ISME Journal 3:1204–1217

    Article  PubMed  CAS  Google Scholar 

  15. Ebersberger D, Werrnbter N, Niklaus PA, Kandler E (2004) Effects of long term CO2 enrichment on microbial community structure in calcareous grassland. Plant Soil 264:313–323

    Article  CAS  Google Scholar 

  16. Fenner N, Ostle NJ, McNamara N, Sparks T, Harmens H, Reynolds B, Freeman C (2007) Elevated CO2 effects on peatland plant community carbon dynamics and DOC production. Ecosystems 10:635–647

    Article  CAS  Google Scholar 

  17. Fraser LH, Catry SM, Steer D (2004) A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosm. Bioresource Tech 94:185–192

    Article  CAS  Google Scholar 

  18. Freeman C, Fenner N, Ostle NJ, Kang H, Dowrick DJ, Reynolds B, Lock MA, Sleep D, Hughes S, Hudson J (2004) Dissolved organic carbon export from peatlands under elevated carbon dioxide levels. Nature 430:195–198

    Article  PubMed  CAS  Google Scholar 

  19. Fromin N, Tarnawski S, Roussel-Delif L, Hamelin J, Baggs EM, Aragno M (2005) Nitrogen fertiliser rate affects the frequency of nitrate-dissimilating Pseudomonas spp. in the rhizosphere of Lolium perenne grown under elevated pCO2 (Swiss FACE). Soil Biol Biochem 37:1962–1965

    Article  CAS  Google Scholar 

  20. Gersberg RM, Elkins BV, Lyons SR, Goldman CR (1986) Role of aquatic plants in wastewater treatment by artificial wetlands. Water Res 20:363–368

    Article  CAS  Google Scholar 

  21. Grayston SJ, Griffith GS, Mawdsley JL, Campbell CD, Bardgett RD (2001) Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biol Biochem 33:533–551

    Article  CAS  Google Scholar 

  22. Groner E, Novoplansky A (2003) Reconsidering diversity–productivity relationships: directness of productivity estimates matters. Ecol Lett 6:695–699

    Article  Google Scholar 

  23. Gutknecht JLM, Goodman RM, Balser TC (2006) Linking soil process and microbial ecology in freshwater wetland ecosystems. Plant Soil 289:17–34

    Article  CAS  Google Scholar 

  24. Hales BA, Edwards C, Ritchie DA, Hall G, Pickup RW, Saunders JR (1996) Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl Environ Microbiol 62:668–675

    PubMed  CAS  Google Scholar 

  25. Henry S, Bru D, Stres B, Hallet S, Philippot L (2006) Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl Environ Microbiol 72:5181–5189

    Article  PubMed  CAS  Google Scholar 

  26. Hunt PG, Matheny TA, Szogi AA (2003) Denitrification in constructed wetlands used for treatment of swine wastewater. J Environ Qual 32:727–735

    Article  PubMed  CAS  Google Scholar 

  27. Ineson P, Coward PA, Hartwig UA (1998) Soil gas fluxes of N2O, CH4 and CO2 beneath Lolium perenne under elevated CO2: the Swiss free air carbon dioxide enrichment experiment. Plant Soil 198:89–95

    Article  CAS  Google Scholar 

  28. Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007. Cambridge University Press, Cambridge

    Google Scholar 

  29. Janus LR, Angeloni NL, McCormack J, Rier ST, Tuchman NC, Kelly JJ (2005) Elevated atmospheric CO2 alters soil microbial communities associated with trembling aspen (Populus tremuloides) roots. Microb Ecol 50:102–109

    Article  PubMed  Google Scholar 

  30. Jossi M, Fromin N, Tarnawski S, Kohler F, Gillet F, Aragno N, Hemelin J (2006) How elevated pCO2 modifies total and metabolically active bacterial communities in the rhizosphere of two perennial grasses grown under field conditions. FEMS Microb Ecol 55:339–350

    Article  CAS  Google Scholar 

  31. Kemnitz D, Chin K-J, Bodelier P, Conrad R (2004) Community analysis of methanogenic archaea within a riparian flooding gradient. Environ Microbiol 6:449–461

    Article  PubMed  CAS  Google Scholar 

  32. Kettunen R, Saarnio S, Martikainen P, Silvola J (2005) Elevated CO2 concentration and nitrogen fertilisation effects on N2O and CH4 fluxes and biomass production of Phleum pratense on farmed peat soil. Soil Biol Biochem 37:739–750

    Article  CAS  Google Scholar 

  33. Kim S-Y, Lee S-H, Freeman C, Fenner N, Kang H (2008) Comparative analysis of soil microbial community structures and their responses to drought in bog, fen, and riparian wetland. Soil Biol Biochem 40:2874–2880

    Article  CAS  Google Scholar 

  34. Körner C, Diemer M, Schappi B, Niklaus PA, Arnone JA (1997) The responses of alpine grassland to four seasons of CO2 enrichment: a synthesis. Acta Oecol 18:165–176

    Article  Google Scholar 

  35. Lipson DA, Blair M, Barron-Gafford G, Grieve K, Murthy R (2006) Relationship between microbial community structure and soil processes under elevated atmosphere carbon dioxide. Microb Ecol 51:302–314

    Article  PubMed  Google Scholar 

  36. Liu X, Tiquia SM, Holguin G, Wu L, Nold SC, Devol AH, Luo K, Palumbo AV, Tiedje JM, Zhou J (2003) Molecular diversity of denitrifying genes in continental margin sediments within the oxygen-deficient zone off the Pacific Coast of Mexico. Appl Environ Microbiol 69:3549–3560

    Article  PubMed  CAS  Google Scholar 

  37. Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628

    Article  PubMed  CAS  Google Scholar 

  38. Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521–3530

    PubMed  CAS  Google Scholar 

  39. Ma K, Conrad R, Lu Y (2012) Response of methanogen mcrA genes and their transcripts to an alternate dry/wet cycle of paddy field soil. Appl Environ Microbiol 78:445–454

    Article  PubMed  CAS  Google Scholar 

  40. Marschner P, Yang CH, Lieberei R, Crowley DE (2001) Soil and plant species effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1445

    Article  CAS  Google Scholar 

  41. McCann KS (2000) The diversity–stability debate. Nature 405:228–233

    Article  PubMed  CAS  Google Scholar 

  42. Miethling R, Wieland G, Backhaus H, Tebbe CC (2000) Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microb Ecol 40:43–56

    PubMed  CAS  Google Scholar 

  43. Mitsch WJ, Gosselink JG (1993) Wetlands. Wiley, New York

    Google Scholar 

  44. Mounier E, Hallet S, Cheneby D, Benizri E, Gruet Y, Nguyen C, Piutti S, Robin C, Slezack-Deschaumes S, Martin-Laurent F, Germon JC, Philippot L (2004) Influence of maize mucilage on the diversity and activity of the denitrifying community. Environ Microbiol 6:301–312

    Article  PubMed  CAS  Google Scholar 

  45. Pendall E, Bridgham S, Hanson PJ, Hungate B, Kicklighter DW, Johnson DW, Law BE, Luo Y, Megonigal JP, Olsrud M, Ryan MG, Wan S (2004) Below-ground process response to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. New Phytologist 162:311–322

    Article  Google Scholar 

  46. Priemé A, Braker G, Tiedje JM (2002) Diversity of nitrite reductase (nirK and nirS) gene fragments in forested upland and wetland soils. Appl Environ Microbiol 68:1893–1900

    Article  PubMed  Google Scholar 

  47. Rajaniemi TK (2003) Explaining productivity-diversity relationships in plants. Oikos 101:449–457

    Article  Google Scholar 

  48. Schimel JP, Gulledge J (1998) Microbial community structure and global trace gases. Global Change Biol 4:745–758

    Article  Google Scholar 

  49. Sheik CS, Beasley WH, Elshahed MS, Zhou X, Luo Y, Krumholz LR (2011) Effect of warming and drought on grassland microbial communities. ISME J 5:1692–1700

    Article  PubMed  CAS  Google Scholar 

  50. Šimek M, Cooper JE (2002) The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. Eur J Soil Sci 53:345–354

    Article  Google Scholar 

  51. Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751

    Article  PubMed  CAS  Google Scholar 

  52. Song K, Lee S-H, Mitsch WJ, Kang H (2010) Different responses of denitrification rates and denitrifying bacterial communities to hydrologic pulsing in created wetlands. Soil Biol Biochem 42:1721–1727

    Article  CAS  Google Scholar 

  53. Song K, Lee S-H, Kang H (2011) Denitrification rates and community structure of denitrifying bacteria in newly constructed wetland. Eur J Soil Biol 47:24–29

    Article  CAS  Google Scholar 

  54. Sowerby A, Blum H, Gray TRG, Ball AS (2000) The decomposition of Lolium perenne in soils exposed to elevated CO2: comparisons of mass loss of litter with soil respiration and soil microbial biomass. Soil Biol Biochem 32:1359–1366

    Article  CAS  Google Scholar 

  55. Tarnawski S, Hamelin J, Jossi M, Aragno M, Fromin N (2006) Phenotypic structure of Pseudomonas populations is altered under elevated pCO2 in the rhizosphere of perennial grasses. Soil Biol Biochem 38:1193–1201

    Article  CAS  Google Scholar 

  56. Urbanová Z, Picek T, Bárta J (2011) Effect of peat re-wetting on carbon and nutrient fluxes, greenhouse gas production and diversity of methanogenic archaeal community. Ecol Eng 37:1017–1026

    Article  Google Scholar 

  57. Vale M, Nguyen C, Dambrine E, Dupouey JL (2005) Microbial activity in the rhizosphere soil of six herbaceous species cultivated in a greenhouse is correlated with shoot biomass and root C concentrations. Soil Biol Biochem 37:2329–2333

    Article  CAS  Google Scholar 

  58. van Veen JA, Liljeroth E, Lekkerkerk LJA, van de Geijn SC (1991) Carbon fluxes in plant-soil systems at elevated atmospheric CO2 levels. Ecol Appl 1:175–181

    Article  Google Scholar 

  59. Waldrop MP, Zak DP, Blackwood CB, Curtis CD, Tilman D (2006) Resource availability controls fungal diversity across a plant diversity gradient. Ecol Lett 9:1127–1135

    Article  PubMed  Google Scholar 

  60. Whitman WB, Jeanthon C (2006) Methanococcales. Prokaryotes 3:257–273

    Article  Google Scholar 

  61. Wolsing M, Priemé A (2004) Observation of high seasonal variation in community structure of denitrifying bacteria in arable soil receiving artificial fertilizer and cattle manure by determining T-RFLP of nir gene fragments. FEMS Microb Ecol 48:261–71

    Article  CAS  Google Scholar 

  62. Yan T, Fields MW, Wu L, Zu Y, Tiedje JM, Zhou J (2003) Molecular diversity and characterization of nitrite reductase gene fragments (nirK and nirS) from nitrate- and uranium-contaminated groundwater. Environ Microbiol 5:13–24

    Article  PubMed  CAS  Google Scholar 

  63. Yang H-S, Kim C (2007) The riparian vegetation of close-to-nature river and streams in Korea. Korean J Plant Resources 20:234–241

    Google Scholar 

  64. Yin B, Crowley D, Sparovek G, Jose de Melo W, Borneman J (2000) Bacterial functional redundancy along a soil reclamation gradient. Appl Environ Microbiol 66:4361–4365

    Article  PubMed  CAS  Google Scholar 

  65. Zhou J, Xia B, Treves DA, Wu L-Y, Marsh TL, O’Neill RV, Palumbo AV, Tiedje JM (2002) Spatial and resource factors influencing high microbial diversity in soil. Appl Environ Microbiol 68:326–334

    Article  PubMed  CAS  Google Scholar 

  66. Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by EcoSTAR (No. 08-III-12) and NRF (2010-0028708, 2011-0030838)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hojeong Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SH., Kim, SY. & Kang, H. Effects of Elevated CO2 on Communities of Denitrifying Bacteria and Methanogens in a Temperate Marsh Microcosm. Microb Ecol 64, 485–498 (2012). https://doi.org/10.1007/s00248-012-0036-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0036-8

Keywords

Navigation