Skip to main content

Oidiodendron maius: Saprobe in Sphagnum Peat, Mutualist in Ericaceous Roots?

  • Chapter
Microbial Root Endophytes

Part of the book series: Soil Biology ((SOILBIOL,volume 9))

13.6 Conclusions

Oidiodendron maius forms associations with the roots of ericaceous shrubs, though the nature of the relationship remains uncertain. Is it a mutualistic mycorrhizal association, a preemptively colonised refugium for the fungus, a case of parasitism of the fungus by the plant, or some combination of the three? In vitro studies indicate that O. maius can improve host plant growth both by aiding plant nutrition and detoxifying the soil environment, although the benefits to O. maius are unclear. It remains necessary to investigate the benefits to both partners and demonstrate what environmental conditions determine the functional nature of the relationship. O. maius has the potential to degrade complex organic polymers within the soil, thus it is unlikely that it would rely on host photosynthate for survival. However, it is possible that O. maius receives some photosynthate, which could supplement saprobically derived carbon, potentially giving O. maius a competitive advantage over other soil fungi. The tendency towards microspermy in the Ericaceae and the saprobic abilities of ericoid endophytes suggests that ericoid mycorrhizal associations may represent another example of controlled parasitism of a fungal partner by the host plant, similar to the type that occurs with orchids. Entrapment of O. maius could confer a competitive advantage on the host plants by increasing the supply of organically bound nutrients-unavailable to plants that lack ericoid mycorrhizas, and by supplementing host plant photosynthesis with fungal-derived carbon. Given the wide taxonomic tolerance that ericaceous plants have for root endophytic fungi in vitro, the obvious need for more detailed studies of endophytic diversity of fungi growing in plants in situ, the enigmatic ecological roles of related Helotialean fungi (e.g. P. fortinii, Geomyces, etc.), much more exploratory and empirical research is needed before we will be able to answer the question posed at the outset of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addy HD, Piercey MM, Currah RS (2005) Microfungal endophytes in roots. Can J Bot 83:1–13

    Article  Google Scholar 

  • Aerts R (2002) The role of various types of mycorrhizal fungi in nutrient cycling and plant competition. In: van der Heijden MGA, Sanders IR (eds) Ecological studies, vol 157 Mycorrhizal ecology Springer, Berlin Heidelberg New York, pp 117–133

    Google Scholar 

  • Allen TR, Millar T, Berch SM, Berbee ML (2003) Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytol 160:255–272

    Article  CAS  Google Scholar 

  • Bain HF (1937) Production of synthetic mycorrhiza in the cultivated cranberry. J Agric Res 55:811–835

    Google Scholar 

  • Bajwa R, Read DJ (1985) The biology of mycorrhiza in the Ericaceae. IX. Peptides as nitrogen sources for the ericoid endophyte and for mycorrhizal and non-mycorrhizal plants. New Phytol 101:459–467

    Article  CAS  Google Scholar 

  • Barron GL (1962) New species and new records of Oidiodendron. Can J Bot 40:589–607

    Article  Google Scholar 

  • Bending GD, Read DJ (1996) Nitrogen mobilization from tannin-protein complexes by ericoid and ectomycorrhizal fungi. Soil Biol Biochem 28:1603–1612

    Article  CAS  Google Scholar 

  • Bending GD, Read DJ (1997) Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi. Mycol Res 101:1348–1354

    Article  CAS  Google Scholar 

  • Bergero R, Perotto S, Girlanda MM, Vidano G, Luppi AM (2000) Ericoid mycorrhizal fungi are common root associates of a Mediterranean ectomycorrhizal plant (Quercus ilex). Mol Ecol 9:1639–1649

    Article  PubMed  CAS  Google Scholar 

  • Bidartondo MI, Kretzer AM, Pine EM, Bruns TD (2000) High root concentrations and uneven ectomycorrhizal diversity near Sarcodes sanguinea (Ericaceae): A cheater that stimulates its victims? Am J Bot 87:1783–1788

    Article  PubMed  Google Scholar 

  • Chambers SM, Liu G, Cairney WG (2000) ITS rDNA sequence comparison of ericoid mycorrhizal endophytes from Woollsia pungens. Mycol Res 104:168–174

    Article  CAS  Google Scholar 

  • Clapp JP, Helgason T, Daniell TJ, Young JPW (2002) Genetic studies of the structure and diversity of arbuscular mycorrhizal fungal communities. In: van der Heijden MGA, Sanders IR (eds) Ecological studies, vol 157. Mycorrhizal ecology Springer, Berlin Heidelberg New York, pp 201–224

    Google Scholar 

  • Couture M, Fortin JA, Dalpé Y (1983) Oidiodendron griseum Robak: an endophyte of ericoid mycorrhiza in Vaccinium spp. New Phytol 95:375–380

    Article  Google Scholar 

  • Cronquist A (1988) The evolution and classification of flowering plants, 2nd edn. New York Botanic Garden, New York

    Google Scholar 

  • Currah RS, Smreciu ES, Hambleton S (1990) Mycorrhizae and mycorrhizal fungi of boreal species of Platanthera and Coeloglossum (Orchidaceae). Can J Bot 68:1171–1181

    Article  Google Scholar 

  • Currah RS, Tsuneda A, Murakami S (1993) Conidiogenesis in Oidiodendron periconioides and ultrastructure of ericoid mycorrhizas formed with Rhododendron brachycarpum. Can J Bot 71:1481–1485

    Google Scholar 

  • Currah RS, Niemi M, Huhtinen S (1999) Oidiodendron maius and Scytalidium vaccinii from the mycorrhizas of Ericaceae in northern Finland. Karstenia 39:65–68

    Google Scholar 

  • Dalpé Y (1986) Axenic synthesis of ericoid mycorrhiza in Vaccinium angustifolium Ait. by Oidiodendron species. New Phytol 103:391–396

    Article  Google Scholar 

  • Dalpé Y (1989) Ericoid mycorrhizal fungi in the Myxotrichaceae and Gymnoascaceae. New Phytol 113:523–527

    Article  Google Scholar 

  • Dalpé Y (1991) Statut endomycorhizien du genre Oidiodendron. Can J Bot 69:1712–1714

    Google Scholar 

  • Dalpé Y, Litten W, Sigler L (1989) Scytalidium vaccinii sp. nov., an ericoid endophyte of Vaccinium angustifolium roots. Mycotaxon 35:371–377

    Google Scholar 

  • Doak KD (1928) The mycorrhizal fungus of Vaccinium. Phytopathology 18:148

    Google Scholar 

  • Douglas AE, Smith DC (1989) Are endosymbioses mutualistic. Tree 4:350–352

    Google Scholar 

  • Douglas GC, Heslin MC, Reid C (1989) Isolation of Oidiodendron maius fromRhododendron and ultrastructural characterization of synthesized mycorrhizas. Can J Bot 67:2206–2212

    Google Scholar 

  • Egger KN (1995) Molecular analysis of ecto-mycorrhizal fungal communities. Can J Bot 73:S1415–S1422

    CAS  Google Scholar 

  • Egger KN, Sigler L (1993) Relatedness of the ericoid endophytes Scytalidium vaccinii and Hymenoscyphus ericae inferred from analysis of ribosomal DNA. Mycologia 85:219–230

    Article  CAS  Google Scholar 

  • Erland S, Taylor AFS (2002) Diversity of ecto-mycorrhizal fungal communities in relation to the abiotic environment. In: van der Heijden MGA, Sanders IR (eds) Ecological studies, vol 157. Mycorrhizal ecology Springer, Berlin Heidelberg New York, pp 163–200

    Google Scholar 

  • Gardes M, White TJ, Fortin JA, Bruns TD, Taylor JW (1991) Identification of indigenous and introduced symbiotic fungi in ecto-mycorrhizas by amplification of nuclear and mitochondrial ribosomal DNA. Can J Bot 69:180–190

    CAS  Google Scholar 

  • Gordon HD (1937) Mycorrhiza in Rhododendron. Ann Bot 1:593–613

    Google Scholar 

  • Hambleton S (1998) Mycorrhizas of the Ericaceae: Diversity and systematics of the mycobionts. PhD Dissertation, University of Alberta, Edmonton

    Google Scholar 

  • Hambleton S, Currah RS (1997) Fungal endophytes from the roots of alpine and boreal Ericaceae. Can J Bot 75:1570–1581

    Google Scholar 

  • Hambleton S, Currah RS (2000) Molecular characterization of the mycorrhizas of woody plants. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants, vol 2. Kluwer, Dordrecht, pp 351–373

    Google Scholar 

  • Hambleton S, Sigler L (2005) Melinia, a new anamorph genus for root-associated fungi with phylogenic affinities to Rhizoscyphus ericae (≡ Hymenoscyphus ericae), Leotiomycetes. Stud Mycol 53:1–27

    Article  Google Scholar 

  • Hambleton S, Egger KN, Currah RS (1998) The genus Oidiodendron: species delimitation and phylogenetic relationships based on nuclear ribosomal DNA analyses. Mycologia 90:854–869

    Article  CAS  Google Scholar 

  • Hambleton S, Huhtinen S, Currah RS (1999) Hymenoscyphus ericae: a new record from western Canada. Mycol Res 103:1391–1397

    Article  Google Scholar 

  • Hoosbeek M, van Breemen N, Berendse F, Grosvernier P, Vasander H, Wallén B (2001) Limited effect of increased atmospheric CO2 concentration on ombrotrophic bog vegetation. New Phytol 150:459–463

    Article  Google Scholar 

  • Horton TR, Bruns TD, Parker VT (1999) Ectomycorrhizal fungi associated with Arctostaphylos contribute to Pseudotsuga menziesii establishment. Can J Bot 77:93–102

    Article  Google Scholar 

  • Hutchison LJ (1990) Studies on the systematics of ectomycorrhizal fungi in axenic culture. II. The enzymatic degradation of selected carbon and nitrogen compounds. Can J Bot 68:1522–1530

    CAS  Google Scholar 

  • Hutchison LJ (1991) Description and identification of cultures of ectomycorrhizal fungi found in North America. Mycotaxon 42:387–504

    Google Scholar 

  • Johansson M (1994) Quantification of mycorrhizal infection units in roots of Calluna vulgaris (L.) Hull from Danish heathland. Soil Biol Biochem 26:557–566

    Article  Google Scholar 

  • Johansson M (2001) Fungal associations of Danish Calluna vulgaris roots with special reference to ericoid mycorrhiza. Plant Soil 231:225–232

    Article  CAS  Google Scholar 

  • Kernan MJ, Finocchio AF (1983) A new discomycete associated with the roots of Monotropa uniflora (Ericaceae). Mycologia 75:916–920

    Article  Google Scholar 

  • Koske RE, Gemma JN, Englander L (1990) Vesicular-arbuscular mycorrhizae in Hawaiian Ericales. Am J Bot 77:64–68

    Article  Google Scholar 

  • Kron KA (1996) Phylogenetic relationships of Empetraceae, Epacridaceae, Ericaceae, Monotropaceae, and Pyrolaceae: evidence from nuclear ribosomal 18S sequence data. Ann Bot 77:293–303

    Article  Google Scholar 

  • Kron KA, Judd WS, Stevens PF, Crayne DM, Anderberg AA, Gadek PA, Quinn CJ, Luteyn JL (2002) Phylogenetic classification of Ericaceae: molecular and morphological evidence. Bot Rev 68:335–423

    Article  Google Scholar 

  • Largent DL, Sugihara N, Wishner C (1980) Occurrence of mycorrhizae on ericaceous and pyrolaceous plants in northern California. Can J Bot 58:2274–2279

    Google Scholar 

  • Leake JR, Donnelly DP, Boddy L (2002) Interactions between ecto-mycorrhizal and saprotrophic fungi. In: van der Heijden MGA, Sanders IR (eds) Ecological studies, vol 157. Mycorrhizal Ecology. Springer, Berlin Heidelberg New York, pp 345–372

    Google Scholar 

  • Lumley TC, Gignac LD, Currah RS (2001) Microfungus communities of white spruce and trembling aspen logs at different stages of decay in disturbed and undisturbed sites in the boreal mixedwood region of Alberta. Can J Bot 79:76–92

    Article  Google Scholar 

  • McKendrick SL, Leake JR, Read DJ (2000) Symbiotic germination and development of mycoheterotrophic plants in nature: transfer of carbon from ectomycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections. New Phytol 145:539–548

    Article  Google Scholar 

  • McKendrick SL, Leake JR, Taylor DL, Read DJ (2002) Symbiotic germination and development of the myco-heterotrophic orchid Neottia nidus-avis in nature and its requirement for locally distributed Sebacina. New Phytol 154:233–247

    Article  Google Scholar 

  • McNabb RFR (1961) Mycorrhiza in the New Zealand Ericales. Aust J Bot 9:57–61

    Article  Google Scholar 

  • Menkis A, Allmer J, Vasiliauskas R, Lygis V, Stenlid J, Finlay R (2004) Ecology and molecular characterization of dark septate fungi in roots, living stems, coarse and fine woody debris. Mycol Res 108:965–973

    Article  PubMed  CAS  Google Scholar 

  • Monreal M, Berch SM, Berbee M (1999) Molecular diversity of ericoid mycorrhizal fungi. Can J Bot 77:1580–1594

    Article  CAS  Google Scholar 

  • Nilsson M, Bååth E, Söderström B (1992) The microfungal communities of a mixed mire in Northern Sweden. Can J Bot 70:272–276

    Google Scholar 

  • Nordgren A, Bååth E, Söderström B (1985) Soil microfungi in an area polluted by heavy metals. Can J Bot 63:448–455

    CAS  Google Scholar 

  • Northup RR, Zengshou Y, Dahlgren RA, Vogt KA (1995) Polyphenol control of nitrogen release from pine litter. Nature 377:227–229

    Article  CAS  Google Scholar 

  • Olsson PA, Jakobsen I, Wallander H (2002) Foraging and resource allocation strategies of mycorrhizal fungi in a patchy environment. In: van der Heijden MGA, Sanders IR (eds) Ecological studies, vol 157. Mycorrhizal ecology Springer, Berlin Heidelberg New York, pp 93–115

    Google Scholar 

  • Pearson V, Read DJ (1973) The biology of mycorrhiza in Ericaceae. I. The isolation of the endophyte and synthesis of mycorrhizas in aseptic culture. New Phytol 72:371–379

    Article  Google Scholar 

  • Perotto S, Perotto R, Faccio A, Schubert A, Varma A, Bonfante P (1995) Ericoid mycorrhizal fungi: cellular and molecular bases of their interactions with the host plant. Can J Bot 73:S557–S568

    CAS  Google Scholar 

  • Perotto S, Actis-Perino E, Perugini J, Bonfante P (1996) Molecular diversity of fungi from ericoid mycorrhizal roots. Mol Ecol 5:123–131

    CAS  Google Scholar 

  • Peteet D, Andreev A, Bardeen W, Mistretta F (1998) Long-term arctic peatland dynamics, vegetation and climate history of the Pur-Taz region, western Siberia. Boreas 27:115–126

    Article  Google Scholar 

  • Piercey MM, Thormann MN, Currah RS (2002) Saprobic characteristics of three fungal taxa from ericalean roots and their association with the roots of Rhododendron groenlandicum and Picea mariana in culture. Mycorrhiza 12:175–180

    Article  PubMed  CAS  Google Scholar 

  • Piercey MM, Graham SW, Currah RS (2004) Patterns of genetic variation in Phialocephala fortinii across a broad latitudinal transect in Canada. Mycol Res 108:955–964

    Article  PubMed  CAS  Google Scholar 

  • Qian XM, El-Ashker A, Kottke I, Oberwinkler F (1998) Studies of pathogenic and antagonistic microfungal populations and their potential interactions in the mycorrhizoplane of Norway spruce (Picea abies (L.) Karst.) and beech (Fagus sylvatica L.) on acidified and limed plots. Plant Soil 199:111–116

    Article  CAS  Google Scholar 

  • Rasmussen H (1995) Terrestrial orchids: From seed to mycotrophic plant. Cambridge University Press, Cambridge

    Google Scholar 

  • Read DJ (1974) Pezizella ericae sp. nov., the perfect state of a typical mycorrhizal endophyte of Ericaceae. Trans Br Mycol Soc 63:381–383

    Article  Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391

    Article  Google Scholar 

  • Read DJ (2002) Towards ecological relevance — progress and pitfalls in the path towards an understanding of mycorrhizal functions in nature. In: van der Heijden MGA, Sanders IR (eds) Ecological studies, vol 157. Mycorrhizal ecology. Springer, Berlin Heidelberg New York, pp 1–29

    Google Scholar 

  • Rice AV, Currah RS (2001) Physiological and morphological variation in Oidiodendron maius. Mycotaxon 79:383–396

    Google Scholar 

  • Rice AV, Currah RS (2002) New perspectives on the niche and holomorph of the myxotrichoid hyphomycete, Oidiodendron maius. Mycol Res 106:1463–1467

    Article  Google Scholar 

  • Rice AV, Currah RS (2005) Oidiodendron: a survey of the named species and unnamed anamorphs of Myxotrichum. Stud Mycol 53:83–120

    Google Scholar 

  • Rice AV, Tsuneda A, Currah RS (2006) In vitro decomposition of Sphagnum by some microfungi resembles white rot of wood. FEMS Microbiol Ecol 56:372–382

    Article  PubMed  CAS  Google Scholar 

  • Schild DE, Kennedy A, Stuart MR (1988) Isolation of symbiont and associated fungi from ectomycorrhizas of Sitka spruce. Eur J Forest Pathol 18:51–61

    Google Scholar 

  • Seiber TN (2002) Fungal root endophytes. In Wasel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Dekker, New York, pp 887–917

    Google Scholar 

  • Simard SW, Jones MD, Durrall DM (2002) Carbon and nutrient fluxes within and between mycorrhizal plants. In: van der Heijden MGA, Sanders IR (eds) Ecological studies, vol 157. Mycorrhizal ecology Springer, Berlin Heidleberg New York, pp 33–74

    Google Scholar 

  • Simon L, Lalonde M, Bruns TD (1992) Specific amplification of the 18S fungal ribosomal genes from VA endomycorrhizal fungi colonizing roots. Appl Environ Microbiol 58:291–295

    PubMed  CAS  Google Scholar 

  • Smith JE, Molina R, Perry D (1995) Occurrence of ectomycorrhizas on ericaceous and coniferous seedlings grown in soils from the Oregon Coast Range. New Phytol 129:73–81

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbioses, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Starrett MC, Blazich FA, Shafer SR, Grand LF (2001) In vitro colonization of micropropagated Pieris floribunda by ericoid mycorrhizae. I. Establishment of mycorrhizae on microshoots. Hort Science 36:353–356

    CAS  Google Scholar 

  • Stoyke G, Currah RS (1991) Endophytic fungi from the mycorrhizae of alpine ericoid plants. Can J Bot 69:347–352

    Google Scholar 

  • Summerbell RC (1987) Microfungi associated with the mycorrhizal mantle and adjacent microhabitats within the rhizosphere of black spruce. Can J Bot 65:1085–1095

    Google Scholar 

  • Svensson BM (1995) Competition between Sphagnum fuscum and Drosera rotundifolia: a case of ecosystem engineering. Oikos 74:205–212

    Article  Google Scholar 

  • Thormann MN (2001) The fungal communities of decomposing plants in southern boreal peatlands of Alberta, Canada. PhD Dissertation, University of Alberta, Edmonton

    Google Scholar 

  • Thormann MN, Currah RS, Bayley SE (2001) Microfungi isolated from Sphagnum fuscum from a southern boreal bog in Alberta, Canada. Bryologist 104:548–559

    Article  Google Scholar 

  • Thormann MN, Currah RS, Bayley SE (2002) The relative ability of fungi from Sphagnum fuscum to decompose selected carbon substrates. Can J Microbiol 48:204–211

    Article  PubMed  CAS  Google Scholar 

  • Thormann MN, Currah RS, Bayley SE (2004) Patterns of distribution of microfungi in decomposing bog and fen plants. Can J Bot 82:710–720

    Article  Google Scholar 

  • Tsuneda A, Currah RS (2004) Ascomatal morphogenesis in Myxotrichum arcticum supports the derivation of the Myxotrichaceae from a discomycetous ancestor. Mycologia 96:627–635

    Google Scholar 

  • Tsuneda A, Thormann MN, Currah RS (2001) Modes of cell wall degradation of Sphagnum fuscum by Acremonium cf. curvulum and Oidiodendron maius. Can J Bot 79:93–100

    Article  Google Scholar 

  • Usuki F, Abe JP, Kakishima M (2003) Diversity of ericoid mycorrhizal fungi isolated from hair roots of Rhododendron obtusum var. kaempferi in a Japanese red pine forest. Mycoscience 44:97–102

    Article  Google Scholar 

  • Vitt DH, Halsey LA, Thormann MN, Martin T (1996) Peatland inventory of Alberta Phase 1: overview of peatland resources in the natural regions and subregions of the province. Alberta Peatland Resource Centre, Edmonton, Publication 96-1

    Google Scholar 

  • VrÃ¥lstad T, Fossheim T, Schumacher T (2000) Piceirhiza bicolorata-the ectomycorrhizal expression of the Hymenoscyphus ericae aggregate? New Phytol 145:549–563

    Article  Google Scholar 

  • VrÃ¥lstad T, Schumacher T, Taylor AFS (2002) Mycorrhizal synthesis between fungal strains of the Hymenoscyphus ericae aggregate and potential ectomycorrhizal and ericoid hosts. New Phytol 153:143–152

    Article  Google Scholar 

  • Xiao G, Berch S (1992) Ericoid mycorrhizal fungi of Gaultheria shallon. Mycologia 84:470–471

    Article  Google Scholar 

  • Xiao G, Berch S (1995) The ability of known ericoid mycorrhizal fungi to form mycorrhizae with Gaultheria shallon on forest clearcuts. Mycologia 87:467–470

    Article  Google Scholar 

  • Xiao G, Berch S (1999) Organic nitrogen use by salal ericoid mycorrhizal fungi from northern Vancouver Island and impacts on growth in vitro of Gaultheria shallon. Mycorrhiza 9:145–149

    Article  CAS  Google Scholar 

  • Yang WQ, Goulart BL (2000) Mycorrhizal infection reduces short-term aluminum uptake and increases root cation exchange capacity of highbush blueberry plants. Hort Science 35:1083–1086

    CAS  Google Scholar 

  • Yang WQ, Goulart BL, Demchak K (1998) Mycorrhizal infection and plant growth of highbush blueberry in fumigated soil following soil amendment and inoculation with mycorrhizal fungi. Hort Science 33:1136–1137

    Google Scholar 

  • Yang WQ, Goulart BL, Demchak K, Li Y (2002) Interactive effects of mycorrhizal inoculation and or ganic soil a mendments on nitrogen acquisition and growth of highbush blueberry. J Am Soc Hortic Sci 127:742–748

    Google Scholar 

  • Zhang Y-H, Zhuang W-Y (2004) Phylogenetic relationships of some members in the genus Hymenoscyphus (Ascomycetes, Helotiales). Nova Hedwigia 78:475–484

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rice, A.V., Currah, R.S. (2006). Oidiodendron maius: Saprobe in Sphagnum Peat, Mutualist in Ericaceous Roots?. In: Schulz, B.J.E., Boyle, C.J.C., Sieber, T.N. (eds) Microbial Root Endophytes. Soil Biology, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33526-9_13

Download citation

Publish with us

Policies and ethics