Skip to main content
Log in

Associations Between Coinfection Prevalence of Borrelia lusitaniae, Anaplasma sp., and Rickettsia sp. in Hard Ticks Feeding on Reptile Hosts

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

An increasing number of studies reveal that ticks and their hosts are infected with multiple pathogens, suggesting that coinfection might be frequent for both vectors and wild reservoir hosts. Whereas the examination of associations between coinfecting pathogen agents in natural host–vector–pathogen systems is a prerequisite for a better understanding of disease maintenance and transmission, the associations between pathogens within vectors or hosts are seldom explicitly examined. We examined the prevalence of pathogen agents and the patterns of associations between them under natural conditions, using a previously unexamined host–vector–pathogen system—green lizards Lacerta viridis, hard ticks Ixodes ricinus, and Borrelia, Anaplasma, and Rickettsia pathogens. We found that immature ticks infesting a temperate lizard species in Central Europe were infected with multiple pathogens. Considering I. ricinus nymphs and larvae, the prevalence of Anaplasma, Borrelia, and Rickettsia was 13.1% and 8.7%, 12.8% and 1.3%, and 4.5% and 2.7%, respectively. The patterns of pathogen prevalence and observed coinfection rates suggest that the risk of tick infection with one pathogen is not independent of other pathogens. Our results indicate that Anaplasma can play a role in suppressing the transmission of Borrelia to tick vectors. Overall, however, positive effects of Borrelia on Anaplasma seem to prevail as judged by higher-than-expected BorreliaAnaplasma coinfection rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Alekseev AN, Burenkova LA, Vasil’eva IS, Dubinina EV, Chunikhin SP (1996) The functioning of foci of mixed tick-borne infections on Russian territory. Med Parazitol 4:9–16 (In Russian)

    Google Scholar 

  2. Amore G, Tomassone L, Grego E, Ragagli C, Bertolotti L, Nebbia P, Rosati S, Mannelli A (2007) Borrelia lusitaniae in immature Ixodes ricinus (Acari: Ixodidae) feeding on common wall lizards in Tuscany, Central Italy. J Med Entomol 44:303–307

    Article  PubMed  Google Scholar 

  3. Barbour A (2004) Specificity of Borrelia-tick vector relationships. In: Gillespie SH, Smith GL, Osbourn A (eds) Microbe–vector interactions in vector-borne diseases. Cambridge University Press, Cambridge, pp 75–90

    Chapter  Google Scholar 

  4. Barnard SM, Durden LA (2000) A veterinary guide to the parasites of reptiles, vol. 2. Arthropods (excluding mites). Krieger, Malabar

    Google Scholar 

  5. Belongia EA (2002) Epidemiology and impact of coinfections acquired from Ixodes ticks. Vector-Borne Zoonot Dis 2:265–273

    Article  Google Scholar 

  6. Brambor T, Clark WR, Golder M (2005) Understanding interaction models: improving empirical analyses. Polit Anal 13:1–20

    Article  Google Scholar 

  7. Casher LE, Lane RS, Barrett RH, Eisen L (2002) Relative importance of lizards and mammals as hosts for ixodid ticks in northern California. Exp Appl Acarol 26:127–143

    Article  PubMed  Google Scholar 

  8. Daniel M, Černý V (1971) Klíč zvířeny ČSSR. Československá Akademie Vied, Praha

    Google Scholar 

  9. De Carvalho IL, Fonseca JE, Marques JG, Ullmann A, Hojgaard A, Zeidner N, Núncio MS (2008) Vasculitis-like syndrome associated with Borrelia lusitaniae infection. Clin Rheumatol 27:1587–1591

    Article  PubMed  Google Scholar 

  10. De Michelis S, Sewell HS, Collares-Pereira M, Santos-Reis M, Schouls LM, Benes V, Holmes EC, Kurtenbach K (2000) Genetic diversity of Borrelia burgdorferi sensu lato in ticks from mainland Portugal. J Clin Microbiol 38:2128–2133

    PubMed  Google Scholar 

  11. Dib L, Bitam I, Tahri M, Bensouilah M, De Meeûs T (2008) Competitive exclusion between Piroplasmosis and Anaplasmosis agents within Cattle. PloS Pathog 4:e7

    Article  PubMed  Google Scholar 

  12. Dsouli N, Younsi-Kabachii H, Postic D, Nouira S, Gern L, Bouattour A (2006) Reservoir role of lizard Psammodromus algirus in transmission cycle of Borrelia burgdorferi sensu lato (Spirochaetaceae) in Tunisia. J Med Entomol 43:737–742

    Article  PubMed  Google Scholar 

  13. Dumler JS, Choi K-S, Garcia-Garcia JC, Barat NS, Scorpio DG, Garyu JW, Grab DJ, Bakken JS (2005) Human granulocytic Anaplasmosis and Anaplasma phagocytophilum. Emerg Infect Dis 11:1828–1834

    PubMed  Google Scholar 

  14. Ginsberg HS (2008) Potential effects of mixed infections in ticks on transmission dynamics of pathogens: comparative analysis of published records. Exp Appl Acarol 46:29–41

    Article  PubMed  Google Scholar 

  15. Graves S, Stenos J (2003) Rickettsia honei: a spotted fever group rickettsia on three continents. Ann New York Acad Sci 990:62–66

    Article  Google Scholar 

  16. Gronesova P, Ficova M, Mizakova A, Kabat P, Trnka A, Betakova T (2008) Prevalence of avian influenza viruses, Borrelia garinii, Mycobacterium avium, and Mycobacterium avium subsp. paratuberculosis in waterfowl and terrestrial birds in Slovakia, 2006. Avian Pathol 37:537–543

    Article  CAS  PubMed  Google Scholar 

  17. Hanincová K, Schäfer SM, Etti S, Sewell H-S, Taragelová V, Ziak D, Labuda M, Kurtenbach K (2003) Association of Borrelia afzelii with rodents in Europe. Parasitol 126:11–20

    Article  Google Scholar 

  18. Hanincová K, Taragelová V, Koci J, Schäfer SM, Hails R, Ullmann AJ, Piesman J, Labuda M, Kurtenbach K (2003) Association of Borrelia garinii and B. valaisiana with songbirds in Slovakia. Appl Environ Microbiol 69:2825–2830

    Article  PubMed  Google Scholar 

  19. Holden K, Hodzic E, Feng S, Freet KJ, Lefebvre RB, Barthold SW (2005) Coinfection with Anaplasma phagocytophilum alters Borrelia burgdorferi population distribution in C3H/HeN mice. Infect Immun 73:3440–3444

    Article  CAS  PubMed  Google Scholar 

  20. Ishiguro F, Takada N, Masuzawa T, Fukui T (2000) Prevalence of Lyme disease Borrelia spp. in ticks from migratory birds on the Japanese mainland. Appl Environ Microbiol 66:982–986

    Article  CAS  PubMed  Google Scholar 

  21. Jado I, Escuerdo R, Gil H, Jiménez-Alonso MI, Sousa R, García-Pérey AL, Rodréguey-Vargas M, Lobo B, Anda P (2006) Molecular method for identification of Rickettsia species in clinical and environmental samples. J Clin Microbiol 44:4572–4576

    Article  CAS  PubMed  Google Scholar 

  22. Krause PJ (2002) Babesiosis. Med Clin N Am 86:361–373

    Article  PubMed  Google Scholar 

  23. Kuo MM, Lane RS, Giclas PC (2000) A comparative study of mammalian and reptilian alternative pathway of complement-mediated killing of the Lyme disease spirochete (Borrelia burgdorferi). J Parasitol 86:1223–1228

    CAS  PubMed  Google Scholar 

  24. Kurtenbach K, Peacey M, Rijpkema SG, Hoodless AN, Nuttall PA, Randolph SE (1998) Differential transmission of the genospecies of Borrelia burgdorferi sensu lato by game birds and small rodents in England. Appl Environ Microbiol 64:1169–1174

    CAS  PubMed  Google Scholar 

  25. Kurtenbach K, De Michelis S, Sewell H-S, Etti S, Schäfer M, Hails R, Collares-Pereira M, Hanincová K, Labuda M, Bormane A, Donaghy M (2001) Distinct combinations of Borrelia burgdorferi sensu lato genospecies found in individual questing ticks from Europe. Appl Environ Microbiol 67:4926–4929

    Article  CAS  PubMed  Google Scholar 

  26. Levin ML (2007) Effects of coinfection with Borrelia burgdorferi and Anaplasma phagocytophilum in vector ticks and vertebrate hosts. In: van Nitch P (ed) Research on Lyme disease. Nova, New York, pp 1–34

    Google Scholar 

  27. Levin ML, Fish D (2000) Acquisition of coinfection and simultaneous transmission of Borrelia burgdorferi and Ehrlichia phagocytophila by Ixodes scapularis ticks. Infect Immun 68:2183–2186

    Article  CAS  PubMed  Google Scholar 

  28. Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS® for mixed models, 2nd edn. SAS Institute Inc, Cary

    Google Scholar 

  29. Majláthová V, Majláth I, Derdáková M, Víchová B, Peťko B (2006) Borrelia lusitaniae and green lizards (Lacerta viridis), Karst Region, Slovakia. Emerg Infect Dis 12:1895–1901

    PubMed  Google Scholar 

  30. Mather TN, Piesman J, Spielman A (1987) Absence of spirochetes (Borrelia burgdorferi) and piroplasms (Babesia microti) in deer ticks (Ixodes dammini) parasitized by chalcid wasps (Hunterellus hookeri). Med Vet Entomol 1:3–8

    Article  CAS  PubMed  Google Scholar 

  31. Murray PR, Rosenthal KS, Pfaller MA (2009) Medical microbiology, 6th edn. Mosby, Philadelphia

    Google Scholar 

  32. Nieto NC, Foley JE (2009) Meta-analysis of coinfection and coexposure with Borrelia burgdorferi and Anaplasma phagocytophilum in humans, domestic animals, wildlife, and Ixodes ricinus-complex ticks. Vector-Borne Zoonotic Dis 9:93–102

    Article  Google Scholar 

  33. Nieto NC, Foley JE, Bettaso J, Lane RS (2009) Reptile infection with Anaplasma phagocytophilum, the causative agent of granulocytic anaplasmosis. J Parasitol 95:1165–1170

    Article  PubMed  Google Scholar 

  34. Nowak M, Cienuch S, Stańczak J, Siuda K (2010) Detection of Anaplasma phagocytophilum in Amblyomma flavomaculatum ticks (Acari: Ixodidae) collected from lizard Varanus exanthematicus imported to Poland. Exp Appl Acarol 51:363–371

    Article  PubMed  Google Scholar 

  35. Origgi F (2007) Reptile immunology. In: Jacobson ER (ed) Infectious diseases and pathology of reptiles. Color atlas and text. CRC, Boca Raton, pp 131–166

    Chapter  Google Scholar 

  36. Pachner A, Steiner I (2007) Lyme neuroborreliosis: infection, immunity, and inflammation. Lancet Neurol 6:544–552

    Article  PubMed  Google Scholar 

  37. Parola P, Roux V, Camicas JL, Baradji I, Brouqui P, Raoult D (2000) Detection of Ehrlichiae in African ticks by PCR. Trans R Soc Trop Med Hyg 94:707–708

    Article  CAS  PubMed  Google Scholar 

  38. Penchenier L, Simo G, Grébaut P, Nkinin S, Laveissière C, Herder S (2000) Diagnosis of human trypanosomiasis, due to Trypanosoma brucei gambiense in central Africa, by the polymerase chain reaction. Trans R Soc Trop Med Hyg 94:392–394

    Article  CAS  PubMed  Google Scholar 

  39. Postic D, Assous MV, Grimont PA, Baranton G (1994) Diversity of Borrelia burgdorferi sensu lato evidenced by restriction fragment length polymorphism of rrf (5S)–rrl (23S) intergenic spacer amplicons. Int J Sys Bacteriol 44:743–752

    Article  CAS  Google Scholar 

  40. Quinn GP, Keough MJ (2007) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Google Scholar 

  41. Reeves WK, Durden LA, Dasch GA (2006) A spotted fever group Rickettsia from an exotic tick species, Amblyoma exornatum (Acari: Ixodidae), in a reptile breeding facility in the United States. J Med Entomol 43:1099–1101

    Article  PubMed  Google Scholar 

  42. Richter D, Matuschka FR (2006) Perpetuation of the Lyme disease spirochete Borrelia lusitaniae by lizards. Appl Environ Microbiol 72:4627–4632

    Article  CAS  PubMed  Google Scholar 

  43. Rooney AA (2005) Reptiles: the research potential of an overlooked taxon in immunotoxicology. In: Tryphonas H, Fournier M, Blakley BR, Smits J, Brousseau P (eds) Investigative immunotoxicology. CRC Press, Boca Raton, pp 107–128

    Chapter  Google Scholar 

  44. Roux V, Rydkina E, Eremeeva M, Raoult D (1997) Citrate synthase gene comparison, a new tool for phylogenetic analysis, and its application for the Rickettsiae. Int J Sys Bacteriol 47:252–261

    Article  CAS  Google Scholar 

  45. Swanson SJ, Neitzel D, Reed KD, Belongia EA (2006) Coinfections acquired from Ixodes ticks. Clin Microbiol Rev 19:708–727

    Article  PubMed  Google Scholar 

  46. Tarageľová V, Koči J, Hanincová K, Kurtenbach K, Derdáková M, Ogden NH, Literák I, Kocianová E, Labuda M (2008) Blacbirds and song thrushes constitute a key reservoir of Borrelia garinii, the causative agent of borreliosis in Central Europe. Appl Environ Microbiol 74:1289–1293

    Article  Google Scholar 

  47. Thompson C, Spielman A, Krause PJ (2001) Coinfecting deer-associated zoonoses: Lyme disease, babesiosis, and ehrlichiosis. Clin Infect Dis 33:676–685

    Article  CAS  PubMed  Google Scholar 

  48. Tijsse-Klasen E, Fonville M, Reimerink JHJ, Spitzen A, Sprong H (2010) Role of sand lizards in the ecology of Lyme and other tick-borne diseases in the Netherlands. Parasit Vectors 3:42

    Article  PubMed  Google Scholar 

  49. Václav R, Prokop P, Fekiač V (2007) Expression of breeding coloration in European Green Lizards (Lacerta viridis): variation with morphology and tick infestation. Can J Zool 85:1199–1206

    Article  Google Scholar 

  50. Wielinga PR, Gaasenbeek C, Fonville M, de Boer A, de Vries A, Dimmers W, Akkerhuis OP, Jagers G, Schouls LM, Borgsteede F, van der Giessen JW (2006) Longitudinal analysis of tick densities and Borrelia, Anaplasma, and Ehrlichia infections of Ixodes ricinus ticks in different habitat areas in The Netherlands. Appl Environ Microbiol 72:7594–601

    Article  CAS  PubMed  Google Scholar 

  51. Whitworth T, Popov V, Han V, Bouyer D, Stenos J, Graves S, Ndip L, Walker D (2003) Ultrastructural and genetic evidence of a reptilian tick, Aponomma hydrosauri, as a host of Rickettsia honei in Australia—possible transovarial transmission. Ann N Y Acad Sci 990:67–74

    Article  PubMed  Google Scholar 

  52. Zeidner NS, Dolan MC, Massung R, Piesman J, Fish D (2000) Coinfection with Borrelia burgdorferi and the agent of human granulocytic ehrlichiosis suppresses IL-2 and IFN γ production and promotes an IL-4 response in C3H/HeJ mice. Parasite Immunol 22:581–588

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ján Krištofík for tick determination. Milan Olekšák and the directive of the Slovak Karst National Park provided logistic support. This study was funded by the VEGA grants no. 2/7080/27 and 1/0207/08. The study was conducted under approval from the Ministry of Environment of the Slovak Republic (license no. 1430/467/04-5.1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radovan Václav.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Václav, R., Ficová, M., Prokop, P. et al. Associations Between Coinfection Prevalence of Borrelia lusitaniae, Anaplasma sp., and Rickettsia sp. in Hard Ticks Feeding on Reptile Hosts. Microb Ecol 61, 245–253 (2011). https://doi.org/10.1007/s00248-010-9736-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-010-9736-0

Keywords

Navigation