Skip to main content

Advertisement

Log in

Reptiles as a Source of Salmonella O48—Clinically Important Bacteria for Children: The Relationship Between Resistance to Normal Cord Serum and Outer Membrane Protein Patterns

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Bacteria of the Salmonella O48 somatic antigen group are clinically important strains causing intestinal dysfunction and diarrhoea, especially in children. The susceptibility of Salmonella O48 strains containing sialic acid (N-acetylneuraminic acid (NeuAc)) in lipopolysaccharide (LPS) to the bactericidal action of normal cord serum (NCS) was determined. The authors' previous results published in Microbial Ecology in 2010 indicated that neither the presence of NeuAc in LPS nor the length of the O-specific part of LPS containing NeuAc plays a decisive role in determining bacterial resistance to the bactericidal activity of normal human serum (NHS), and that the presence of NeuAc in the LPS structure is not sufficient to block the activation of the alternative pathway of complement in NHS. The current results showed that the tested strains showed various sensitivities also to the bactericidal action of NCS. The authors postulate that the presence of certain outer membrane proteins (OMPs) are characteristic of the resistant and sensitive phenotypes of Salmonella O48 strains. To establish a possible relationship between resistance to NCS and OMPs band patterns, ten Salmonella O48 strains were studied as follows: susceptibility to the bactericidal effect of NCS, the mechanisms of NCS activation and OMP band patterns obtained by sodium dodecyl sulphate-polyacrylamide gel electrophoresis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Adinolfi M, Beck SE (1975) Human complement C7 and C9 in fetal and newborn sera. Arch Dis Child 50:562–564

    Article  CAS  PubMed  Google Scholar 

  2. Alberti S, Marquez G, Camprubi S, Merino TJM, Vivanco F, Benedi J (1993) C1q binding and activation of the complement classical pathway by Klebsiella pneumoniae outer membrane proteins. Infect Immun 61:852–860

    CAS  PubMed  Google Scholar 

  3. Attia AS, Lafontaine ER, Latimer JL, Aebi C, Syrogiannopoulos GA, Hansen EJ (2005) The UspA2 protein of Moraxella catarrhalis is directly involved in the expression of serum resistance. Infect Immun 73:2400–2410

    Article  CAS  PubMed  Google Scholar 

  4. Barnes MG, Weiss AA (2001) BrkA protein of Bordetella pertusis inhibits the classical pathway of complement after C1 deposition. Infect Immun 5:3067–3072

    Article  Google Scholar 

  5. Bugla-Płoskońska G, Rybka J, Futoma-Kołoch B, Cisowska A, Gamian A, Doroszkiewicz W (2010) Sialic acid-containing lipopolysaccharides of Salmonella O48 strains—potential role in camouflage and susceptibility to the bactericidal action of normal human serum. Microb Ecol 59:601–613. doi:10.1007/s00248-009-9600-2

    Article  PubMed  Google Scholar 

  6. Bugla-Płoskońska G, Kiersnowski A, Futoma-Kołoch B, Doroszkiewicz W (2009) Killing of Gram-negative bacteria with normal human serum and normal bovine serum: use of lysozyme and complement protein in the death of Salmonella strains O48. Microb Ecol 58:276–289

    Article  PubMed  Google Scholar 

  7. Bugla-Płoskońska G, Cisowska A, Karpińska K, Jankowski S, Doroszkiewicz W (2006) The mechanisms of the activation of normal human serum complement by Escherichia coli strains with K1 surface antigen. Folia Microbiol 6:627–632

    Article  Google Scholar 

  8. Bugla-Płoskońska G, Doroszkiewicz W (2006) Bactericidal activity of normal bovine serum (NSB) directed against some Enterobacteriaceae with sialic acid-containing lipopolysaccharides (LPS) as a component of cell wall. Pol J Microb 55:169–174

    Google Scholar 

  9. Chaffer M, Heller ED, Schwartsburd B (1999) Relationship beetween resistance to complement, virulence and outer membrane protein patterns in pathogenic Escherichia coli O2 isolates. Vet Microbiol 64:323–332

    Article  CAS  PubMed  Google Scholar 

  10. Cirillo DM, Heffernan EJ, Wu L, Harwood J, Fierer J, Guiney DG (1996) Identification of a domain in Rck, a product of the Salmonella typhimurium virulence plasmid, required for both serum resistance and cell invasion. Infect Immun 64:2019–2023

    CAS  PubMed  Google Scholar 

  11. Cisowska A, Jankowski S (2004) The sensitivity of Escherichia coli strains with K1 surface antigen and rods without this antigen to the bactericidal effect of serum. Folia Microb 49:471–478

    Article  CAS  Google Scholar 

  12. Cohen IR, Norins LC (1968) Antibodies of the IgG, IgM and IgA classes in newborn and adult sera reactive with Gram-negative bacteria. J Clin Invest 47:1053–1062

    CAS  PubMed  Google Scholar 

  13. Davis CHA, Vallota EH, Forristal J (1979) Serum complement levels in infancy: age related changes. Pediatr Res 13:1043–1046

    Article  CAS  PubMed  Google Scholar 

  14. Doroszkiewicz W (1997) Mechanism of antigenic variation in Shigella flexneri bacilli. IV. Role lipopolysaccharides and their components in the sensitivity of Shigella flexneri 1b and its Lac + recombinant to killing action of serum. Arch Immunol Ther Exp 45:235–242

    CAS  Google Scholar 

  15. Edinger D, Bello E, Mates A (1977) The heterocytotoxicity of human serum. I. Activation of the alternative complement pathway by heterologous target cells. Cell Immunol 29:174–186

    Article  Google Scholar 

  16. Ferriani VPL, Barbosa JE, de Carvalho IF (1999) Complement haemolytic activity (classical and alternative pathways) C3, C4 and factor B titres in healthy children. Acta Paediatr 88:1062–1066

    Article  CAS  PubMed  Google Scholar 

  17. Fine DP, Marney SR, Colley DG, Sergent JS, Des Prez RM (1972) C3 shunt activation in human serum chelated with EGTA. J Immunol 109:807–809

    CAS  PubMed  Google Scholar 

  18. Foster N, Kerr K (2005) The snake in the grass—Salmonella arizonae gastroenteritidis in a reptile handler. Acta Paediatr 8:1165–1166

    Article  Google Scholar 

  19. Galdiero F, Tufano MA, Sommese L, Folgore L, Tedesco F (1984) Activation of complement system by porins extracted from Salmonella typhimurium. Infect Immun 2:559–563

    Google Scholar 

  20. Gamian A, Jones C, Lipiński T, Korzeniowska-Kowal A, Ravenscroft N (2000) Structure of the sialic acid-containing O-specific polysaccharide from Salmonella enterica serovar Toucra O48 lipopolysaccharide. Eur J Biochem 267:3160–3167

    Article  CAS  PubMed  Google Scholar 

  21. Giammanco GM, Pignato S, Mammina C, Grimont F, Grimont PAD, Nastasi A, Giammanco G (2002) Persistent endemicity of Salmonella bongori 48:z35:- in Southern Italy: molecular characterisation of human, animal and environmental isolates. J Clin Microbiol 9:3502–3505

    Article  Google Scholar 

  22. Głośnicka R, Dera-Tomaszewska B (2005) Serowary Salmonella występujace w Polsce, określone w krajowym Ośrodku Salmonella, 1957-2005. Krajowy Ośrodek Salmonella, Gdańsk, in Polish

    Google Scholar 

  23. Grimond PD, Weill FX (2007) Antigenic formulae of the Salmonella serovars, 9th edn. WHO Collaborating Centre for Reference and Research on Salmonella, Paris, France

    Google Scholar 

  24. Hamid N, Jain SK (2008) Characterization of an outer membrane protein of Salmonella enterica serovar typhimurium that confers protection against typhoid. Clin Vac Immunol 15:1461–1471

    Article  CAS  Google Scholar 

  25. Harobe M, Mollnes TM (2008) The alternative complement pathway revised. J Cell Mol Med 4:1074–1084

    Article  Google Scholar 

  26. Joiner KA, Hammer CH, Brown EJ, Cole RJ, Frank MM (1982) Studies on the mechanism of bacterial resistance to complement-mediated killing. I. Terminal complement components are deposited and released from Salmonella minnesota S218 without causing bacterial death. J Exp Med 155:797–808

    Article  CAS  PubMed  Google Scholar 

  27. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 15:680–685

    Article  Google Scholar 

  28. Merino S, Nogueras M, Aquilair A, Rubires X, Alberti S, Benedi VJ, Tomas JM (1998) Activation the complement classical pathway (C1q binding) by mesophilic Aeromonas hydrophila outer membrane protein. Infect Immun 66:3825–3831

    CAS  PubMed  Google Scholar 

  29. Mermin J, Hoar B, Angulo FJ (1997) Iguanas and Salmonella marina infection in children: a reflection of the increasing incidence of reptile-associated salmonellosis in the United States. Paediatrics 99(3):399–402

    Article  CAS  Google Scholar 

  30. Mielnik G, Gamian A, Doroszkiewicz W (2001) Bactericidal activity of normal cord serum (NCS) against Gram-negative rods with sialic acid-containing lipopolysaccharides (LPS). FEMS Immunol Med Microbiol 31:169–173

    Article  CAS  PubMed  Google Scholar 

  31. Moll A, Manning PA, Timmis KN (1980) Plasmid-determined resistance to serum bactericidal activity: a major outer membrane protein, the traT gene product, is responsible for plasmid-specifed serum resistance in Escherichia coli. Infect Immun 28:359–367

    CAS  PubMed  Google Scholar 

  32. Moran AP, Prendergast MM, Appelmelk BJ (1996) Molecular mimicry of host structures by bacterial lipopolysaccharides and its contribution to disease. FEMS Immunol Med Microbiol 16:105–115

    Article  CAS  PubMed  Google Scholar 

  33. Murphy TF, Bartos LC (1989) Surface-exposed and antigenically conserved determinants of outer membrane proteins of Branhamella catarrhalis. Infect Immun 57:2938–2941

    CAS  PubMed  Google Scholar 

  34. Nakadai A, Kuroki T, Kato Y, Suzuki R, Ymai S, Yaginuma CH, Shiotani R, Yamanouchi A, Hayashidani H (2005) Prevelence of Salmonella spp. in pet reptiles in Japan. J Vet Med Sci 1:97–101

    Article  Google Scholar 

  35. Nastasi A, Mammina C, Villafrate MR, Massenti MF, Scarlata G, Diquattro M (1988) Multiple typing of strains of Salmonella enterica subsp. bongori ser. 48:z35:-isolated in southern Italy. Ann Institut Pasteur Microbiol 139:605–612

    Article  CAS  Google Scholar 

  36. O'Byrne AM, Mahon M (2008) Reptile-associated salmonellosis in residents in the South East of Ireland 2005–2007. Eurosurveillance 4–6:1–2

    Google Scholar 

  37. PIERCE Instructions. Pierce®BCA Protein Assay kit. Thermo Scientific, Pierce Biotechnology

  38. Prescott LM, Harley JP, Klein DA (2002) Microbiology, 5th edn. McGraw-Hill, Boston

    Google Scholar 

  39. Rautemaa R, Meri S (1999) Complement-resistance mechanisms of bacteria. Microbes Infect 1:785–794

    Article  CAS  PubMed  Google Scholar 

  40. Rockwood D, Wilson MT, Darley-Usmar VM (1987) Isolation and characteristic of intact mitochondria. In: Darley-Usmar VM, Rickwood D, Wilson MT (eds) Mitochondria: a practical approach. IRL Press, Oxford, p 1–16

    Google Scholar 

  41. Schröter M, Roggentin P, Hofmann J, Speicher A, Laufs R, Mack D (2004) Pet snakes as a reservoir for Salmonella enterica subsp. diarizonae (Serogroup IIIb): a prospective study. Appl Env Microb 1:613–615

    Article  Google Scholar 

  42. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  PubMed  Google Scholar 

  43. Taylor PW (1983) Bactericidal and bacteriolytic activity of serum against gram-negative bacteria. Microbiol Rev 47:46–83

    CAS  PubMed  Google Scholar 

  44. Taylor PW, Parton R (1976) A protein factor associated with serum resistance in Escherichia coli. J Med Microbiol 10:225–232

    Article  Google Scholar 

  45. Uzzau S, Brown DJ, Wallis T, Rubino S, Leori G, Bernerd S, Casadesus J, Platt DJ, Olsen JE (2000) Host adapted serotypes of Salmonella enterica. Epidemiol Infect 125:229–255

    Article  CAS  PubMed  Google Scholar 

  46. Waterman SH, Juarez G, Carr SJ, Kilman L (1990) Salmonella arizona infections in Latinos associated with rattlesnake folk medicine. Am J Public Health 80:286–289

    Article  CAS  PubMed  Google Scholar 

  47. Weiser JN, Gotschlich EC (1991) Outer membrane protein A (OmpA) contributes to serum resistance and pathogenicity of Escherichia coli K-1. Infect Immun 59:2252–2258

    CAS  PubMed  Google Scholar 

  48. White CD, Leduc I, Olsen B, Jeter C, Harris C, Elkins C (2005) Haemophilus ducreyi outer membrane determinants, including DsrA, define two clonal populations. Infect Immun 4:2387–2399

    Article  Google Scholar 

  49. Witkowska D, Masłowska E, Staniszewska M, Szostko B, Jankowski A, Gamian A (2006) Enterobacterial 38-kDa outer membrane protein is an age-dependent molecular marker of innate immunity and immunoglobulin deficiency as results from its reactivity with IgG and IgA antibody. FEMS Immunol Med Microbiol 48:205–214

    Article  CAS  PubMed  Google Scholar 

  50. Witkowska D, Pietkiewicz J, Szostko B, Danielewicz R, Masowski L, Gamian A (2005) Antibodies against human muscle enolase recognize a 45-kDa bacterial cell wall outer membrane enolase-like protein. FEMS Immunol Med Microbiol 45:53–62

    Article  CAS  PubMed  Google Scholar 

  51. Woodward DL, Khakhira R, Johnson WM (1997) Human salmonellosis with exotic pets. J Clin Microb 11:2786–2790

    Google Scholar 

  52. Zollinger WD, Boslego J, Froholm LO, Ray JS, Moran EE, Brandt BL (1987) Human bactericidal antibody response to meningococcal outer membrane protein vaccines. Antonie Van Leeuwenhoek 53:403–411

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Dr. hab. A. Gamian (Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland) for the Salmonella strains from the Polish Collection of Microorganisms. We would like to thank Mgr. Aleksandra Skwara for the contribution to figure preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Bugla-Płoskońska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bugla-Płoskońska, G., Korzeniowska-Kowal, A. & Guz-Regner, K. Reptiles as a Source of Salmonella O48—Clinically Important Bacteria for Children: The Relationship Between Resistance to Normal Cord Serum and Outer Membrane Protein Patterns. Microb Ecol 61, 41–51 (2011). https://doi.org/10.1007/s00248-010-9677-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-010-9677-7

Keywords

Navigation