Skip to main content

Advertisement

Log in

Diversity and Functionality of Arbuscular Mycorrhizal Fungi in Three Plant Communities in Semiarid Grasslands National Park, Canada

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Septate endophytes proliferating in the roots of grasslands’ plants shed doubts on the importance of arbuscular mycorrhizal (AM) symbioses in dry soils. The functionality and diversity of the AM symbioses formed in four replicates of three adjacent plant communities (agricultural, native, and restored) in Grasslands National Park, Canada were assessed in periods of moisture sufficiency and deficiency typical of early and late summer in the region. The community structure of AM fungi, as determined by polymerase chain reaction-denaturing gradient gel electrophoresis, varied with sampling time and plant community. Soil properties other than soil moisture did not change significantly with sampling time. The DNA sequences dominating AM extraradical networks in dry soil apparently belonged to rare taxa unreported in GenBank. DNA sequences of Glomus viscosum, Glomus mosseae, and Glomus hoi were dominant under conditions of moisture sufficiency. In total, nine different AM fungal sequences were found suggesting a role for the AM symbioses in semiarid areas. Significant positive linear relationships between plant P and N concentrations and active extraradical AM fungal biomass, estimated by the abundance of the phospholipid fatty acid marker 16:1ω5, existed under conditions of moisture sufficiency, but not under dry conditions. Active extraradical AM fungal biomass had significantly positive linear relationship with the abundance of two early season grasses, Agropyron cristatum (L.) Gaertn. and Koeleria gracilis Pers., but no relationship was found under dry conditions. The AM symbioses formed under conditions of moisture sufficiency typical of early summer at this location appear to be important for the nutrition of grassland plant communities, but no evidence of mutualism was found under the dry conditions of late summer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Allison VJ, Miller RM, Jastrow JD, Matamala R, Zak DR (2005) Changes in soil microbial community structure in a tallgrass prairie chronosequence. Soil Sci Soc Am J 69:1412–1421

    Article  CAS  Google Scholar 

  2. Baccanti M, Colombo B (1992) A new method for the automatic and selective determination of total organic carbon in sediments, soils, compost, particles in air, etc. Carlo Erba Instruments, Rodano

    Google Scholar 

  3. Balser TC, Treseder KK, Ekenler M (2005) Using lipid analysis and hyphal length to quantify AM and saprotrophic fungal abundance along a soil chronosequence. Soil Biol Biochem 37:601–604

    Article  CAS  Google Scholar 

  4. Blaszkowski J, Tadych M, Madej T (2002) Arbuscular mycorrhizal fungi (Glomales Zygomycota) of the Bledowska Desert Poland. Acta Soc Bot Pol 71:71–85

    Google Scholar 

  5. Burke DJ, Hamerlynck EP, Hahn D (2003) Interactions between the salt marsh grass Spartina patens arbuscular mycorrhizal fungi and sediment bacteria during the growing season. Soil Biol Biochem 35:501–511

    Article  CAS  Google Scholar 

  6. Camargo-Ricalde SL, Esperón-Rodríguez M (2005) Effect of the spatial and seasonal soil heterogeneity over arbuscular mycorrhizal fungal spore abundance in the semi-arid valley of Tehuacán-Cuicatlán Mexico. Rev Biol Trop 53:339–352

    PubMed  Google Scholar 

  7. Clapperton MJ, Lacey MJ, Hanson K, Hamel C (2005) Analysis of phospholipid and neutral lipid fatty acids extracted from soils. In: Research Newsletter SPARC-AAFC. Swift Current, SK Canada. December 1–2

  8. Clarke Topp G, Parkin GW, Ferré Ty PA (2007) Soil water content. In: Soil sampling and methods of analysis, CRC Press, Boca Raton, FL, pp 939–961

  9. Cornejo P, Azcón-Aguilar C, Miguel BJ, Ferrol N (2004) Temporal temperature gradient gel electrophoresis (TTGE) as a tool for the characterization of arbuscular mycorrhizal fungi. FEMS Microbiol Lett 241:265–270

    Article  PubMed  CAS  Google Scholar 

  10. Daniell TJ, Husband R, Fitter AH, Young JPW (2001) Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol Ecol 36:203–209

    Article  PubMed  CAS  Google Scholar 

  11. Dixon JM (2000) Koeleria macrantha (Ledeb) Schultes (K alpigena Domin K cristata (L) Pers pro parte K gracilis Pers K albescens auct non DC). J Ecol 88:709–726

    Article  Google Scholar 

  12. Douhan GW, Petersen C, Bledsoe CS, Rizzo DM (2005) Contrasting root associated fungi of three common oakwood land-plant species based on molecular identification: host specificity or non-specific amplification? Mycorrhiza 15:365–372

    Article  PubMed  CAS  Google Scholar 

  13. Ferrol N, Calvente R, Cano C, Barea JM, Azcón-Aguilar C (2004) Analysing arbuscular mycorrhizal fungal diversity in shrub-associated resource islands from a desertification-threatened semiarid Mediterranean ecosystem. Appl Soil Ecol 25:123–133

    Article  Google Scholar 

  14. Franco AD, Cano IG, Quintero VP, García NM (2008) Response of sorghum to arbuscular mycorrhizal fungi and Azospirillum under drought stress. Rev Fitotec Mex 31:35–42

    Google Scholar 

  15. Füzy A, Biró B, Tóth T, Hildebrandt U, Bothe H (2008) Drought but not salinity determines the apparent effectiveness of halophytes colonized by arbuscular mycorrhizal fungi. J Plant Physiol 165:1181–1192

    Article  PubMed  CAS  Google Scholar 

  16. Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth root architecture and P acquisition. Mycorrhiza 14:185–192

    Article  PubMed  Google Scholar 

  17. Grime JP, Mackey JML, Hillier SH, Read DJ (1988) Floristic diversity in a model system using experimental microcosms. Nature 328:420–422

    Article  Google Scholar 

  18. Guadarrama P, Álvarez-Sánchez FJ (1999) Abundance of arbuscular mycorrhizal fungi spores in different environments in a tropical rain forest Veracruz Mexico. Mycorrhiza 8:267–270

    Article  Google Scholar 

  19. Gupta R, Kumar P (2000) Mycorrhizal plants in response to adverse environmental conditions. In: Mycorrhizal Biology, Plenum Publisher, India, pp 67–84

  20. Hamel C (2004) Impact of arbuscular mycorrhizal fungi on N and P cycling in the root zone. Can J Soil Sci 84:383–395

    CAS  Google Scholar 

  21. Hao X, Ball BC, Culley JLB, Carter MR, Parkin GW (2007) Soil density and porosity. In: Soil Sampling and Methods of Analysis, CRC Press, Boca Raton, FL, pp 743–760

  22. Hartnett DC, Hetrick BAD, Wilson GWT, Gibson DJ (1993) Mycorrhizal influence on intra- and interspecific neighbour interactions among co-occurring prairie grasses. J Ecol 81:787–795

    Article  Google Scholar 

  23. Hedlund K (2002) Soil microbial community structure in relation to vegetation management on former agricultural land. Soil Biol Biochem 34:1299–1307

    Article  CAS  Google Scholar 

  24. Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web? Nature 394:431

    Article  PubMed  CAS  Google Scholar 

  25. Helgason T, Merryweather JW, Denison J, Wilson P, Young JPW, Fitter AH (2002) Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. J Ecol 90:371–384

    Article  Google Scholar 

  26. Hijri M, Sanders IR (2005) Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei. Nature 433:160–163

    Article  PubMed  CAS  Google Scholar 

  27. Ibekwe AM, Kennedy AC, Frohne PS, Papiernik SK, Yang CH, Crowley DE (2002) Microbial diversity along a transect of agronomic zones. FEMS Microbiol Ecol 39:183–191

    Article  PubMed  CAS  Google Scholar 

  28. Jankong P, Visoottiviseth P (2008) Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil. Chemosphere 72:1092–1097

    Article  PubMed  CAS  Google Scholar 

  29. Jordan N, Huerd S (2008) Effects of soil fungi on weed communities in a corn-soybean rotation. Renew Agr Food Syst 23:108–117

    Google Scholar 

  30. Khidir HH, Eudy DM, Porras-Alfaro A, Herrera J, Natvig DO, Sinsabaugh RL (2009) A general suite of fungal endophytes dominate the roots of two dominant grasses in a semiarid grassland. J Arid Environ 74:35–42

    Article  Google Scholar 

  31. Landis FC, Fraser LH (2008) A new model of carbon and phosphorus transfers in arbuscular mycorrhizas. New Phytol 177:466–479

    PubMed  CAS  Google Scholar 

  32. Li AR, Guan KY (2008) Arbuscular mycorrhizal fungi may serve as another nutrient strategy for some hemiparasitic species of Pedicularis (Orobanchaceae). Mycorrhiza 18:429–436

    Article  PubMed  CAS  Google Scholar 

  33. Liang Z, Drijber RA, Lee DJ, Dwiekat IM, Harris SD, Wedin DA (2008) A DGGE-cloning method to characterize arbuscular mycorrhizal community structure in soil. Soil Biol Biochem 40:956–966

    Article  CAS  Google Scholar 

  34. Likar M, Regvar M, Mandic-Mulec I, Stres B, Bothe H (2009) Diversity and seasonal variations of mycorrhiza and rhizosphere bacteria in three common plant species at the Slovenian Ljubljana Marsh. Biol Fert Soils 1–11

  35. Lugo MA, Anton AM, Cabello MN (2005) Arbuscular mycorrhizas in the Larrea divaricata scrubland of the arid ‘Chaco’, Central Argentina. J Agric Technol 1:163–178

    Google Scholar 

  36. Lugo MA, Cabello MN (2002) Native arbuscular mycorrhizal fungi (AMF) from mountain grassland (Cόrdoba Argentina) I. Seasonal variation of fungal spore diversity. Mycologia 94:579–586

    Article  Google Scholar 

  37. Ma WK, Siciliano SD, Germida JJ (2005) A PCR-DGGE method for detecting arbuscular mycorrhizal fungi in cultivated soils. Soil Biol Biochem 37:1589–1597

    Article  CAS  Google Scholar 

  38. Mandyam K, Jumpponen A (2008) Seasonal and temporal dynamics of arbuscular mycorrhizal and dark septate endophytic fungi in a tallgrass prairie ecosystem are minimally affected by nitrogen enrichment. Mycorrhiza 18:145–155

    Article  PubMed  Google Scholar 

  39. Marler MJ, Zabinski CA, Callaway RM (1999) Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology 80:1180–1186

    Article  Google Scholar 

  40. Maynard DG, Karla YP (1993) Nitrate and exchangeable ammonium nitrogen. In: Soil sampling and methods of analysis, CRC Press, Boca Raton, FL, pp 25–38

  41. McKeague JA (1979) Manual of soil sampling and methods of analysis. Canadian Society of Soil Science, Ottawa

    Google Scholar 

  42. Milbury WF, Stack VT, Doll FL (1970) Simultaneous determination of total phosphorus and total Kjeldahl nitrogen in activated sludge with the Technicon continuous digestor system. Tech Int Cong Adv Auto Anal Ind Anal 2:299–304

    Google Scholar 

  43. Miller SP, Bever JD (1999) Distribution of arbuscular mycorrhizal fungi in stands of the wetland grass Panicum hemitomon along a wide hydrologic gradient. Oecologia 119:586–592

    Article  Google Scholar 

  44. Noel R, Hambleton LG (1975) Collaborative study of a semi-automated method for the determination of crude protein in animal feeds. In: 89th Annual meeting of the AOAC, Washington DC

  45. Oehl F, Sieverding E, Ineichen K, Mäder P, Wiemken A, Boller T (2009) Distinct sporulation dynamics of arbuscular mycorrhizal fungal communities from different agroecosystems in long-term microcosms. Agric Ecosyst Environ 134:257–268

    Article  Google Scholar 

  46. Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. In: United States Department of Agriculture Circular No 939, US Government Printing Office, Washington DC

  47. Olsson PA, Bååth E, Jakobsen I (1997) Phosphorus effects on the mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by analysis of fatty acid signatures. Appl Environ Microb 63:3531–3538

    CAS  Google Scholar 

  48. Öpik M, Moora M, Liira J, Kõljalg U, Zobel M, Sen R (2003) Divergent arbuscular mycorrhizal fungal communities colonize roots of Pulsatilla spp in boreal Scots pine forest and grassland soils. New Phytol 160:581–593

    Article  Google Scholar 

  49. Parkinson D, Coleman DC (1991) Microbial communities activity and biomass. Agric Ecosyst Environ 34:3–33

    Article  Google Scholar 

  50. Peech M (1965) Hydrogen-ion activity In Black C A. In: Methods of soil analysis, American Society of Agronomy, Madison Wisconsin USA, pp 914–916

  51. Renker C, Weißhuhn K, Kellner H, Buscot F (2006) Rationalizing molecular analysis of field-collected roots for assessing diversity of arbuscular mycorrhizal fungi: to pool or not to pool that is the question. Mycorrhiza 16:525–531

    Article  PubMed  CAS  Google Scholar 

  52. Rodríguez-Echeverría S, Freitas H (2006) Diversity of AMF associated with Ammophila arenaria ssp arundinacea in Portuguese sand dunes. Mycorrhiza 16:543–552

    Article  PubMed  Google Scholar 

  53. Santos-González JC, Finlay RD, Tehler A (2007) Seasonal dynamics of arbuscular mycorrhizal fungal communities in roots in a seminatural grassland. Appl Environ Microb 73:5613–5623

    Article  CAS  Google Scholar 

  54. Schechter SP, Bruns TD (2008) Serpentine and non-serpentine ecotypes of Collinsia sparsiflora associate with distinct arbuscular mycorrhizal fungal assemblages. Mol Ecol 17:3198–3210

    Article  PubMed  CAS  Google Scholar 

  55. Schwarzott D, Schüßler A (2001) A simple and reliable method for SSU rRNA gene DNA extraction amplification and cloning from single AM fungal spores. Mycorrhiza 10:203–207

    Article  CAS  Google Scholar 

  56. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  57. Simon L, Lalonde M, Bruns TD (1992) Specific amplification of 18 S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Appl Environ Microbiol 58:291–295

    PubMed  CAS  Google Scholar 

  58. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16 S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  59. Staddon PL, Ramsey CB, Ostle N, Ineson P, Fitter AH (2003) Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of C-14. Science 300:1138–1140

    Article  PubMed  CAS  Google Scholar 

  60. Stein C, Rißmann C, Hempel S, Renker C, Buscot F, Prati D, Auge H (2009) Interactive effects of mycorrhizae and a root hemiparasite on plant community productivity and diversity. Oecologia 159:191–205

    Article  PubMed  Google Scholar 

  61. Thiet RK, Frey SD, Six J (2006) Do growth yield efficiencies differ between soil microbial communities differing in fungal:bacterial ratios? Reality check and methodological issues. Soil Biol Biochem 38:837–844

    Article  CAS  Google Scholar 

  62. Tisdall JM (1991) Fungal hyphae and structural stability of soil. Aust J Soil Res 29:729–743

    Article  Google Scholar 

  63. UNEP/CEP (1992) Environmental problems affecting the marine and coastal environment in the wider caribbean region. In: 10th Meeting of the Monitoring Committee on the Action Plan for the Caribbean Parties, Kingston, Jamaica

  64. Van Der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  65. Van Hoewyk D, Wigand C, Groffman PM (2001) Endomycorrhizal colonization of Dasiphora floribunda a native plant species of calcareous wetlands in Eastern New York State, USA. Wetlands 21:431–436

    Article  Google Scholar 

  66. Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck JM, Fitter AH, Young JPW (2002) Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Mol Ecol 11:1555–1564

    Article  PubMed  CAS  Google Scholar 

  67. Wenke L (2008) N, P Contribution and soil adaptability of four arbuscular mycorrhizal fungi. Acta Agr Scand B-S P 58:285–288

    Google Scholar 

  68. Witter E, Kanal A (1998) Characteristics of the soil microbial biomass in soils from a long-term field experiment with different levels of C input. Appl Soil Ecol 10:37–49

    Article  Google Scholar 

  69. Woosaree J, Acharya SN, Darroch BA (2004) ARC Mountain View June grass. Can J Plant Sci 84:245–247

    Google Scholar 

  70. Wubet T, Weiß M, Kottke I, Teketay D, Oberwinkler F (2006) Phylogenetic analysis of nuclear small subunit rDNA sequences suggests that the endangered African Pencil Cedar Juniperus procera is associated with distinct members of Glomeraceae. Mycol Res 110:1059–1069

    Article  PubMed  CAS  Google Scholar 

  71. Welsh AK, Burke DJ, Hamerlynck EP, Hahn D, (2009). Seasonal analyses of arbuscular mycorrhizae, nitrogen-fixing bacteria and growth performance of the salt marsh grass Spartina patens. Plant and Soil, 1–16.

Download references

Acknowledgments

Authors are grateful to Grasslands National Park. This work was carried out with the aid of a grant from the Inter-American Institute for Global Change Research (IAI) CRN, which is supported by the US National Science Foundation (Grant GEO-04523250).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C., Hamel, C., Schellenberg, M.P. et al. Diversity and Functionality of Arbuscular Mycorrhizal Fungi in Three Plant Communities in Semiarid Grasslands National Park, Canada. Microb Ecol 59, 724–733 (2010). https://doi.org/10.1007/s00248-009-9629-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-009-9629-2

Keywords

Navigation