Skip to main content
Log in

Response of the Sulfate-Reducing Community to the Re-establishment of Estuarine Conditions in Two Contrasting Soils: a Mesocosm Approach

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

We studied the response of the sulfate-reducing prokaryote (SRP) communities to the experimental variation of salinity and tide in an outdoor mesocosm setup. Intact soil monoliths were collected at two areas of the Haringvliet lagoon (The Netherlands): one sampling location consisted of agricultural grassland, drained and fertilized for at least the last century; the other of a freshwater marshland with more recent sea influence. Two factors, i.e., “salinity” (freshwater/oligohaline) and “tide” (nontidal/tidal), were tested in a full-factorial design. Soil samples were collected after 5 months (June–October). Dissimilatory (bi)sulfite reductase β subunit-based denaturing gradient gel electrophoresis (dsrB-DGGE) analysis revealed that the SRP community composition in the agricultural grassland and in the freshwater marshland was represented mainly by microorganisms related to the Desulfobulbaceae and the Desulfobacteraceae, respectively. Desulfovibrio-related dsrB were detected only in the tidal treatments; Desulfomonile-related dsrB occurrence was related to the presence of oligohaline conditions. Treatments did have an effect on the overall SRP community composition of both soils, but not on the sulfate depletion rates in sulfate-amended anoxic slurry incubations. However, initiation of sulfate reduction upon sulfate addition was clearly different between the two soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Nienhuis PH (1993) Nutrient cycling and foodwebs in Dutch estuaries. Hydrobiologia 265:15–44

    CAS  Google Scholar 

  2. Tönis IE, Stam JMT, Van de Graaf J (2002) Morphological changes in the Haringvliet estuary after closure in 1970. Coast Eng 44:191–203

    Article  Google Scholar 

  3. Withagen L (2000) DELTA 2000: inventarisatie huidige situatie Deltawateren. Rijksinstituut voor Kunst en Zee (RIKZ), pp 144

  4. Smits AJM, Nienhuis PH, Saeijs HLF (2006) Changing estuaries, changing views. Hydrobiologia 565:339–355

    Article  Google Scholar 

  5. Bol R, Van Hees J, Kraak A, Van der Linden T, Lofvers E, Meeuwissen B, Ooms H, Paalvast P, Peters H, Posthoorn R, Schmidt C, Van Sprundel L, Van Vessem P, Van Wijngaarden M, De Win J (1998) MER Beheer Haringvlietsluizen: over de grens van zout en zoet, de sluizen op een Kier. Directorate-General for Public Works and Water Management (Rijkswaterstaat), pp 79 (in Dutch)

  6. Driesprong AJ, van Hees J, de Jong L (1998) Environmental impact assessment of the Haringvliet sluices. Directorate-General for Public Works and Water Management (Rijkswaterstaat), Rotterdam, p 119

    Google Scholar 

  7. Lamers LPM, Tomassen HBM, Roelofs JGM (1998) Sulfate-induced entrophication and phytotoxicity in freshwater wetlands. Environ Sci Technol 32:199–205

    Article  CAS  Google Scholar 

  8. Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982

    CAS  PubMed  Google Scholar 

  9. Rabus R, Hansen T, Widdel F (2006) Dissimilatory sulfate- and sulfur-reducing prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 659–768

    Chapter  Google Scholar 

  10. Hansen TA (1994) Metabolism of sulfate-reducing prokaryotes. Antonie Van Leeuwenhoek 66:165–185

    Article  CAS  PubMed  Google Scholar 

  11. Castro H, Williams NH, Ogram A (2000) Phylogeny of sulfate-reducing bacteria. FEMS Microbiol Ecol 31:1–9

    CAS  PubMed  Google Scholar 

  12. Miletto M, Loy A, Antheunisse AM, Loeb R, Bodelier PLE, Laanbroek HJ (2008) Biogeography of sulfate-reducing prokaryotes in river floodplains. FEMS Microbiol Ecol 64:395–406

    Article  CAS  PubMed  Google Scholar 

  13. Antheunisse AM, Loeb R, Miletto M, Lamers LPM, Laanbroek HJ, Verhoeven JTA (2007) Response of nitrogen dynamics in semi-natural and agricultural grassland soils to experimental variation in tide and salinity. Plant Soil 292:45–61

    Article  CAS  Google Scholar 

  14. Tabatabai MA (1974) Rapid method for determination of sulfate on water samples. Environ Lett 7:237–243

    Article  CAS  Google Scholar 

  15. Boschker HTS, Nold SC, Wellsbury P, Bos D, de Graaf W, Pel R, Parkes RJ, Cappenberg TE (1998) Direct linking of microbial populations to specific biogeochemical processes by C-13-labelling of biomarkers. Nature 392:801–805

    Article  CAS  Google Scholar 

  16. Boschker HTS, de Graaf W, Koster M, Meyer-Reil LA, Cappenberg TE (2001) Bacterial populations and processes involved in acetate and propionate consumption in anoxic brackish sediment. FEMS Microbiol Ecol 35:97–103

    Article  CAS  PubMed  Google Scholar 

  17. Guckert JB, Antworth CP, Nichols PD, White DC (1985) Phospholipid, ester-linked fatty-acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol Ecol 31:147–158

    CAS  Google Scholar 

  18. Miletto M, Bodelier PLE, Laanbroek HJ (2007) Improved PCR-DGGE for high resolution diversity screening of complex sulfate-reducing prokaryotic communities in soils and sediments. J Microbiol Methods 70:103–111

    Article  CAS  PubMed  Google Scholar 

  19. Loy A, Küsel K, Lehner A, Drake HL, Wagner M (2004) Microarray and functional gene analyses of sulfate-reducing prokaryotes in low-sulfate, acidic fens reveal cooccurrence of recognized genera and novel lineages. Appl Environ Microbiol 70:6998–7009

    Article  CAS  PubMed  Google Scholar 

  20. Zverlov V, Klein M, Lücker S, Friedrich MW, Kellermann J, Stahl DA, Loy A, Wagner M (2005) Lateral gene transfer of dissimilatory (bi)sulfite reductase revisited. J Bacteriol 187:2203–2208

    Article  CAS  PubMed  Google Scholar 

  21. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  CAS  PubMed  Google Scholar 

  22. Smith SW, Overbeek R, Woese CR, Gilbert W, Gillevet PM (1994) The Genetic Data Environment (GDE): an expandable GUI for multiple sequence analysis. Comput Appl Biosci 10:671–675

    CAS  PubMed  Google Scholar 

  23. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2005) GenBank. Nucleic Acids Res 33:D34–D38

    Article  CAS  PubMed  Google Scholar 

  24. Kohring LL, Ringelberg DB, Devereux R, Stahl DA, Mittelman MW, White DC (1994) Comparison of phylogenetic relationships based on phospholipid fatty acid profiles and ribosomal RNA sequence similarities among dissimilatory sulfate-reducing bacteria. FEMS Microbiol Lett 119:303–308

    Article  CAS  PubMed  Google Scholar 

  25. Bahr M, Crump BC, Klepac-Ceraj V, Teske A, Sogin ML, Hobbie JE (2005) Molecular characterization of sulfate-reducing bacteria in a New England salt marsh. Environ Microbiol 7:1175–1185

    Article  CAS  PubMed  Google Scholar 

  26. Madrid VM, Aller RC, Aller JY, Chistoserdov AY (2006) Evidence of the activity of dissimilatory sulfate-reducing prokaryotes in nonsulfidogenic tropical mobile muds. FEMS Microbiol Ecol 57:169–181

    Article  CAS  PubMed  Google Scholar 

  27. Loeb R (2008) On biogeochemical processes influencing eutrophication and toxicity in riverine wetlands. Ph.D. thesis, Radboud University Nijmegen, Nijmegen

  28. Pallud C, Van Cappellen P (2006) Kinetics of microbial sulfate reduction in estuarine sediments. Geochim Cosmochim Acta 70:1148–1162

    Article  CAS  Google Scholar 

  29. Imachi H, Sekiguchi Y, Kamagata Y, Loy A, Qiu YL, Hugenholtz P, Kimura N, Wagner M, Ohashi A, Harada H (2006) Non-sulfate-reducing, syntrophic bacteria affiliated with Desulfotomaculum cluster I are widely distributed in methanogenic environments. Appl Environ Microbiol 72:2080–2091

    Article  CAS  PubMed  Google Scholar 

  30. Leloup J, Quillet L, Berthe T, Petit F (2006) Diversity of the dsrAB (dissimilatory sulfite reductase) gene sequences retrieved from two contrasting mudflats of the Seine estuary, France. FEMS Microbiol Ecol 55:230–238

    Article  CAS  PubMed  Google Scholar 

  31. Kondo R, Purdy KJ, De Queiroz Silva S, Nedwell DB (2007) Spatial dynamics of sulphate-reducing bacterial compositions in sediment along a salinity gradient in a UK estuary. Microbes Environ 22:11–19

    Article  Google Scholar 

  32. Laanbroek HJ, Geerligs HJ, Sijtsma L, Veldkamp H (1984) Competition for sulfate and ethanol among Desulfobacter, Desulfobulbus, and Desulfovibrio species isolated from intertidal sediments. Appl Environ Microbiol 47:329–334

    CAS  PubMed  Google Scholar 

  33. Laanbroek HJ, Pfennig N (1981) Oxidation of short-chain fatty acids by sulfate-reducing bacteria in freshwater and in marine sediments. Arch Microbiol 128:330–335

    Article  CAS  PubMed  Google Scholar 

  34. Sass AM, Eschemann A, Kuhl M, Thar R, Sass H, Cypionka H (2002) Growth and chemosensory behavior of sulfate-reducing bacteria in oxygen-sulfide gradients. FEMS Microbiol Ecol 40:47–54

    CAS  PubMed  Google Scholar 

  35. Ito T, Okabe S, Satoh H, Watanabe Y (2002) Successional development of sulfate-reducing bacterial populations and their activities in a wastewater biofilm growing under microaerophilic conditions. Appl Environ Microbiol 68:1392–1402

    Article  CAS  PubMed  Google Scholar 

  36. Widdel F (2006) The genus Desulfotomaculum. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 787–794

    Chapter  Google Scholar 

  37. Chang YJ, Peacock AD, Long PE, Stephen JR, McKinley JP, Macnaughton SJ, Hussain A, Saxton AM, White DC (2001) Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site. Appl Environ Microbiol 67:3149–3160

    Article  CAS  PubMed  Google Scholar 

  38. Joulian C, Ramsing NB, Ingvorsen K (2001) Congruent phylogenies of most common small-subunit rRNA and dissimilatory sulfite reductase gene sequences retrieved from estuarine sediments. Appl Environ Microbiol 67:3314–3318

    Article  CAS  PubMed  Google Scholar 

  39. Tang Y, Shigematsu T, Ikbal MS, Kida K (2004) The effects of micro-aeration on the phylogenetic diversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester. Water Res 38:2537–2550

    Article  CAS  PubMed  Google Scholar 

  40. Loy A, Lehner A, Lee N, Adamczyk J, Meier H, Ernst J, Schleifer KH, Wagner M (2002) Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl Environ Microbiol 68:5064–5081

    Article  CAS  PubMed  Google Scholar 

  41. Klein M, Friedrich M, Roger AJ, Hugenholtz P, Fishbain S, Abicht H, Blackall LL, Stahl DA, Wagner M (2001) Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J Bacteriol 183:6028–6035

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Reshmadevie Bissesar and Kees Hordijk for their help in the laboratory. Leon Lamers, Jan Roelofs, and Jos Verhoeven are acknowledged for the stimulating discussions. This research was funded by the Netherlands Organization for Scientific Research (NWO). It was part of the TRIAS project 835.80.010 “Biogeochemical constraints for sustainable development of floodplains in riverine regions.” This is publication no. 4645 of the Netherlands Institute of Ecology (NIOO-KNAW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzia Miletto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miletto, M., Loeb, R., Antheunisse, A.M. et al. Response of the Sulfate-Reducing Community to the Re-establishment of Estuarine Conditions in Two Contrasting Soils: a Mesocosm Approach. Microb Ecol 59, 109–120 (2010). https://doi.org/10.1007/s00248-009-9614-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-009-9614-9

Keywords

Navigation