Skip to main content
Log in

Thermally Treated Grass Fibers as Colonizable Substrate for Beneficial Bacterial Inoculum

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

This study investigates how thermally treated (i.e., torrefied) grass, a new prospective ingredient of potting soils, is colonized by microorganisms. Torrefied grass fibers (TGF) represent a specific colonizable niche, which is potentially useful to establish a beneficial microbial community that improves plant growth. TGF and torrefied grass extracts (TGE) were inoculated with a suspension of microorganisms obtained from soil. Sequential microbial enrichment steps were then performed in both substrates. The microbial communities developing in the substrates were assessed using cultivation-based and cultivation-independent approaches. Thus, bacterial isolates were obtained, and polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) analyses for bacterial communities were performed. Partial sequencing of the 16S ribosomal RNA gene from isolates and bands from DGGE gels showed diverse communities after enrichment in TGE and TGF. Bacterial isolates affiliated with representatives of the α-proteobacteria (Methylobacterium radiotolerans, Rhizobium radiobacter), γ-proteobacteria (Serratia plymuthica, Pseudomonas putida), Cytophaga–Flavobacterium–Bacteroides (CFB) group (Flavobacterium denitrificans), β-proteobacteria (Ralstonia campinensis), actinobacteria (Cellulomonas parahominis, Leifsonia poae, L. xyli subsp. xyli, and Mycobacterium anthracenicum), and the firmicutes (Bacillus megaterium) were found. In TGE, γ-proteobacteria were dominant (61.5% of the culturable community), and 20% belonged to the CFB group, whereas actinobacteria (67.4%) and α-proteobacteria (21.7%) were prevalent in TGF. A germination assay with lettuce seeds showed that the phytotoxicity of TGF and TGE decreased due to the microbial enrichment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Abad M, Noguera P, Puchades R, Maquieira A, Noguera V (2002) Physico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerised ornamental plants. Bioresour Technol 82:241–245

    Article  PubMed  CAS  Google Scholar 

  2. Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H (2000) Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589

    PubMed  CAS  Google Scholar 

  3. Aranda E, Sampedro I, Ocampo JA, Garcia-Romera I (2006) Phenolic removal of olive-mill dry residues by laccase activity of white-rot fungi and its impact on tomato plant growth. Int Biodeterior Biodegrad 58:176–179

    Article  CAS  Google Scholar 

  4. Cui XL, Mao PH, Zeng M, Li WJ, Zhang LP, Xu LH, Jiang CL (2001) Streptimonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 51:357–363

    PubMed  CAS  Google Scholar 

  5. Fornes F, Belda RM, Abad M, Noguera P, Puchades R, Maquieira A, Noguera V (2003) The microstructure of coconut coir dusts for use as alternatives to peat in soilless growing media. Aust J Exp Agric 43:1171–1179

    Article  Google Scholar 

  6. Geissler A, Selenska-Pobell S (2005) Addition of U(VI) to a uranium mining waste sample and resulting changes in the indigenous bacterial community. Geobiology 3:275–285

    Article  CAS  Google Scholar 

  7. Godfrey SAC, Marshall JW, Klena JD (2001) Genetic characterization of PseudomonasNZI7’—a novel pathogen that results in a brown blotch disease of Agaricus bisporus. J Appl Microbiol 91:412–420

    Article  PubMed  CAS  Google Scholar 

  8. Handreck KA, Black ND (1993) Growing media for ornamental plants and turf, 2nd edn. New South Wales University Press, Kensington

    Google Scholar 

  9. Horn MA, Drake HL, Schramm A (2006) Nitrous oxide reductase genes (nosZ) of denitrifying microbial populations in soil and the earthworm gut are phylogenetically similar. Appl Environ Microbiol 72:1019–1026

    Article  PubMed  CAS  Google Scholar 

  10. Hu S, van Bruggen A, Grunwald N (1999) Dynamics of bacterial populations in relation to carbon availability in a residue-amended soil. Appl S Ecol 13:21–30

    Article  Google Scholar 

  11. Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    Article  PubMed  CAS  Google Scholar 

  12. Ihssen J, Horn MA, Matthies C, Gossner A, Schramm A, Drake HL (2003) N2O-producing microorganisms in the gut of the earthworm Aporrectodea caliginosa are Indicative of ingested soil bacteria. Appl Environ Microbiol 69:1655–1661

    Article  PubMed  CAS  Google Scholar 

  13. Iizuka T, Yamanaka S, Nishiyama T, Hiraishi A (1998) Isolation and phylogenetic analysis of aerobic copiotrophic ultramicrobacteria from urban soil. J Gen Appl Microbiol 44:75–84

    Article  PubMed  Google Scholar 

  14. Kok M, Oldenhuis R, van der Linden M, Raatjes P, Kingma J, van Lelyveld P, Witholt B (1989) The Pseudomonas oleovorans alkane hydroxylase gene. Sequence and expression. J Biol Chem 264:5435–5441

    PubMed  CAS  Google Scholar 

  15. Kowalchuk GA, de Bruijn FJ, Head IM, Akkermans AD, van Elsas JD (2004) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. Molecular microbial ecology manual II, vol. 2. Kluwer, Dordrecht, The Netherlands, pp 743–789

    Google Scholar 

  16. Kunito T, Shibata S, Matsumoto S, Oyaizu H (1997) Zinc resistance of Methylobacterium species. Biosci Biotech Biochem 61:729–731

    Article  CAS  Google Scholar 

  17. La Scola B, Mallet MN, Grimont PAD, Raoult D (2002) Description of Afipia birgiae sp. nov. and Afipia massiliensis sp. nov. and recognition of Afipia felis genospecies A. Int J Syst Evol Microbiol 52:1773–1782

    Article  PubMed  CAS  Google Scholar 

  18. Lanoot B, Vancanneyt M, Hoste B, Vandemeulebroecke K, Cnockaert MC, Dawyndt P, Liu Z, Huang Y, Swings J (2005) Grouping of streptomycetes using 16S-ITS RFLP fingerprinting. Res Microbiol 156:755–762

    Article  PubMed  CAS  Google Scholar 

  19. Li W-J, Zhang L-P, Xu P, Cui X-L, Xu L-H, Zhang Z, Schumann P, Stackebrandt E, Jiang C-L (2003) Agromyces aurantiacus sp. nov., isolated from a Chinese primeval forest. Int J Syst Evol Microbiol 53:303–307

    Article  PubMed  CAS  Google Scholar 

  20. López MJ, Nichols NN, Dien BS, Moreno J, Bothast RJ (2004) Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates. Appl Microb Biotech 64:125–131

    Article  CAS  Google Scholar 

  21. Madhaiyan M, Kim BY, Poonguzhali S, Kwon SW, Song MH, Ryu JH, Go SJ, Koo BS, Sa TM (2007) Methylobacterium oryzae sp nov., an aerobic, pink-pigmented, facultatively methylotrophic, 1-aminocyclopropane-L-carboxylate deaminase-producing bacterium isolated from rice. Int J Syst and Evol Microb 57:326–331

    Article  CAS  Google Scholar 

  22. Nedelkova M (2005) Microbial diversity in groundwater at the deep-well monitoring site S15 of the radioactive waste depository Tomsk-7, Siberria, Russia, Freiberg, Germany

  23. Nishimori E, Kita-Tsukamoto K, Wakabayashi H (2000) Pseudomonas plecoglossicida sp. nov., the causative agent of bacterial haemorrhagic ascites of ayu, Plecoglossus altivelis. Int J Syst Evol Microbiol 50:83–89

    PubMed  CAS  Google Scholar 

  24. Nogueira F, Luisa Botelho M, Tenreiro R (1998) Radioresistance studies in Methylobacterium spp. Radiat Phys Chem 52:15–19

    Article  Google Scholar 

  25. Nordin K, Unell M, Jansson JK (2005) Novel 4-chlorophenol degradation gene cluster and degradation route via hydroxyquinol in Arthrobacter chlorophenolicus A6. Appl Environ Microbiol 71:6538–6544

    Article  PubMed  CAS  Google Scholar 

  26. Pach MZR, Björnbom E (2003) Presented at the 6th Asia-Pacific International Symposium on Combustion and Energy Utilisation, 20–22 May 2003, Kuala, Lumpur, Malaysia

  27. Postma J, Montanari M, van den Boogert, Paul H (2003) Microbial enrichment to enhance the disease suppressive activity of compost. Eur J Soil Biol 39:157–163

    Article  Google Scholar 

  28. Quaratino D, D’Annibale A, Federici F, Cereti CF, Rossini F, Fenice M (2007) Enzyme and fungal treatments and a combination thereof reduce olive mill wastewater phytotoxicity on Zea mays L. seeds. Chemosphere 66:1627–1633

    Article  PubMed  CAS  Google Scholar 

  29. Rajasekar APS, Maruthamuthu S, Palaniswamy N, Rajendran A (2006) Presented at the Recent Advances in Marine Autifouling Technology (RAMAT), 5–8 November 2006, Sagar Sangamam, India

  30. Raviv M (1998) Horticultural uses of composted material. Acta Hortic 469:225–234

    Google Scholar 

  31. Ribeiro HMEV, Dos Santos JQ (2000) Fertilisation of potted geranium with a municipal solid waste compost. Bioresour Technol 73:247–249

    Article  CAS  Google Scholar 

  32. Salles JF, Elsas JDv, van Veen JA (2006) Effect of agricultural management regime on Burkholderia community structure in soil. Microb Ecol 52:267–279

    Article  PubMed  CAS  Google Scholar 

  33. Salles JF, van Veen JA, van Elsas JD (2004) Multivariate analyses of Burkholderia species in soil: effect of crop and land use history. Appl Environ Microbiol 70:4012–4020

    Article  PubMed  CAS  Google Scholar 

  34. Sambrook J, Fritsch EF, Maniatis T (1998) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, USA, NY

    Google Scholar 

  35. Smiles D (1988) Aspects of the physical environment of soil organisms. Biol Fertil Soils 6:204–215

    Article  Google Scholar 

  36. Tilman D (1982) Resource competition and community structure. Princeton University Press Princeton, NJ, USA

    Google Scholar 

  37. Trifonova R, Postma J, Francel V, Bouwmeester H, Ketelaars JJMH, Van Elsas JD (2008) Removal of phytotoxic compounds from torrefied grass fibres by microorganisms. FEMS Microb Ecol (in press)

  38. Ucisik AS, Trapp S (2006) Uptake, removal, accumulation, and phytotoxicity of phenol in willow trees (Salix viminalis). Environ Toxicol Chem 25:2455–2460

    Article  PubMed  CAS  Google Scholar 

  39. Verdonck O (1984) Reviewing and evaluation of new material used as substrates. Acta Hortic 150:467–473

    Google Scholar 

  40. Westerberg K, Elvang AM, Stackebrandt E, Jansson JK (2000) Arthrobacter chlorophenolicus sp. nov., a new species capable of degrading high concentrations of 4-chlorophenol. Int J Syst Evol Microbiol 50:2083–2092

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the Dutch Ministry of Agriculture, Nature and Food Quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Postma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trifonova, R., Postma, J., Ketelaars, J.J.M.H. et al. Thermally Treated Grass Fibers as Colonizable Substrate for Beneficial Bacterial Inoculum. Microb Ecol 56, 561–571 (2008). https://doi.org/10.1007/s00248-008-9376-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-008-9376-9

Keywords

Navigation