Skip to main content
Log in

Selective Enhancement of the Fluorescent Pseudomonad Population After Amending the Recirculating Nutrient Solution of Hydroponically Grown Plants with a Nitrogen Stabilizer

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Fluorescent pseudomonads have been associated, via diverse mechanisms, with suppression of root disease caused by numerous fungal and fungal-like pathogens. However, inconsistent performance in disease abatement, after their employment, has been a problem. This has been attributed, in part, to the inability of the biocontrol bacterium to maintain a critical threshold population necessary for sustained biocontrol activity. Our results indicate that a nitrogen stabilizer (N-Serve®, Dow Agrosciences) selectively and significantly enhanced, by two to three orders of magnitude, the resident population of fluorescent pseudomonads in the amended (i.e., 25 μg ml−1 nitrapyrin, the active ingredient) and recycled nutrient solution used in the cultivation of hydroponically grown gerbera and pepper plants. Pseudomonas putida was confirmed as the predominant bacterium selectively enhanced. Terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rDNA suggested that N-Serve® selectively increased P. putida and reduced bacterial diversity 72 h after application. In vitro tests revealed that the observed population increases of fluorescent pseudomonads were preceded by an early growth suppression of indigenous aerobic heterotrophic bacteria (AHB) population. Interestingly, the fluorescent pseudomonad population did not undergo this decrease, as shown in competition assays. Xylene and 1,2,4-trimethylbenzene (i.e., the inert ingredients in N-Serve®) were responsible for a significant percentage of the fluorescent pseudomonad population increase. Furthermore, those increases were significantly higher when the active ingredient (i.e., nitrapyrin) and the inert ingredients were combined, which suggests a synergistic response. P. putida strains were screened for the ability to produce antifungal compounds and for the antifungal activity against Pythium aphanidermatum and Phytophthora capsici. The results of this study suggest the presence of diverse mechanisms with disease-suppressing potential. This study demonstrates the possibility of using a specific substrate to selectively enhance and maintain desired populations of a natural-occurring bacterium such as P. putida, a trait considered to have great potential in biocontrol applications for plant protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Abdo Z, Schuette UME, Bent SJ, Williams CJ, Forney LJ, Joyce P (2006) Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes. Environ Microbiol 8:929–938

    Article  PubMed  Google Scholar 

  2. Alexander DB, Zuberer DA (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12:39–45

    Article  CAS  Google Scholar 

  3. Bertin L, Colao MC, Ruzzi M, Marchetti L, Fava F (2006) Performances and microbial features of an aerobic packed-bed biofilm reactor developed to post-treat an olive mill effluent from an anaerobic GAC reactor. Microb Cell Fact 5:16

    Article  PubMed  CAS  Google Scholar 

  4. Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  PubMed  CAS  Google Scholar 

  5. Campbell NER, Aleem MIH (1965) The effect of 2-chloro,6-(trichloromethyl) pyridine on the chemoautotrophic metabolism of nitrifying bacteria. Antonie van Leeuwenhoek 31:124–136

    Article  PubMed  CAS  Google Scholar 

  6. Colbert SF, Isakeit T, Ferri M, Weinhold AR, Hendson M, Schroth MN (1993a) Use of an exotic carbon source to selectively increase metabolic activity and growth of Pseudomonas putida in soil. Appl Environ Microbiol 59:2056–2063

    PubMed  CAS  Google Scholar 

  7. Colbert SF, Isakeit T, Ferri M, Weinhold AR, Hendson M, Schroth MN (1993b) Enhanced growth and activity of a biocontrol bacterium genetically engineered to utilize salicylate. Appl Environ Microbiol 59:2071–2076

    PubMed  CAS  Google Scholar 

  8. Colbert SF, Schroth MN, Weinhold AR, Hendson M (1993c) Enhancement of population densities of Pseudomonas putida PpG7 in agricultural ecosystems by selective feeding with the carbon source salicylate. Appl Environ Microbiol 59:2064–2070

    PubMed  CAS  Google Scholar 

  9. Cornelis P, Matthijs S (2002) Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: Not only pyoverdines. Environ Microbiol 4:787–798

    Article  PubMed  CAS  Google Scholar 

  10. Cortese MS, Paszczynski A, Lewis TA, Sebat JL, Borek V, Crawford RL (2002) Metal chelating properties of pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas ssp. and the biological activities of the formed complexes. Biometals 15:103–120

    Article  PubMed  CAS  Google Scholar 

  11. Davis RF, Backman PA, Rodriguez-Kabana R, Kokalis-Burelle N (1992) Biological control of apple fruit diseases by Chaetomium globosum formulations containing cellulose. Biol Control 2:118–123

    Article  Google Scholar 

  12. Dwivedi D, Johri BN (2003) Antifungals from fluorescent pseudomonads: Biosynthesis and regulation. Curr Sci 85:1693–1703

    CAS  Google Scholar 

  13. Evans FF, Rosado AS, Sebastian GV, Casella R, Machado PLOA et al (2004) Impact of oil contamination and biostimulation on the diversity of indigenous bacterial communities in soil microcosms. FEMS Microbiol Ecol 49:295–305

    Article  CAS  PubMed  Google Scholar 

  14. Fahy A, Lethbridge G, Earle R, Ball AS, Timmis KN, McGenity TJ (2005) Effects of long-term benzene pollution on bacterial diversity and community structure in groundwater. Environ Microbiol 7:1192–1199

    Article  PubMed  CAS  Google Scholar 

  15. Geels FP, Schmidt EDL, Schippers B (1985) The use of 8-hydroxy-quinoline for the isolation and prequalification of plant growth-stimulating rhizosphere pseudomonads. Biol Fertil Soils 1:167–173

    Article  CAS  Google Scholar 

  16. Goring CAI (1962) Control of nitrification by 2-chloro,6-(trichloromethyl) pyridine. Soil Sci 93:211–218

    CAS  Google Scholar 

  17. Grusak MG, Pezeshgi S (1994) Uniformly 15N-labeled soybean seeds produced for use in human and animal nutrition studies: Description of a recirculating hydroponic growth system and whole plant nutrient and environmental requirements. J Sci Food Agric 64:223–230

    Article  CAS  Google Scholar 

  18. Haas D, Defago G (2005) Biological control of soil-born pathogens by fluorescent pseudomonads. Nature Rev Microbiol 3:307–319

    Article  CAS  Google Scholar 

  19. Hooper AB, Terry KR (1973) Specific inhibitors of ammonia oxidation in Nitrosomonas. J Bacteriol 115:480–485

    PubMed  CAS  Google Scholar 

  20. Iizumi T, Misumoto M, Nakamura K (1998) A bioluminiscence assay using Nitrosomonas europaea for rapid and sensitive detection of nitrification inhibitors. Appl Environ Microbiol 64:3656–3662

    PubMed  CAS  Google Scholar 

  21. Ji P, Wilson M (2003) Enhancement of population size of a biological control agent and efficacy in control of bacterial speck of tomato through salicylate and ammonium sulfate amendments. Appl Environ Microbiol 69:1290–1294

    Article  PubMed  CAS  Google Scholar 

  22. Keel C, Voisard C, Berling CH, Kahr G, Défago G (1989) Iron sufficiency, a prerequisite for the suppression of tobacco black root rot by Pseudomonas fluorescens strain CHA0 under gnotobiotic conditions. Phytopathology 79:584–589

    Article  Google Scholar 

  23. Kokalis-Burelle N, Backman PA, Rodriguez-Kabana R, Ploper LD (1992) Potential for biological control of early leafspot of peanut using Bacillus cereus and chitin as foliar amendments. Biol Control 2:321–328

    Article  Google Scholar 

  24. Kuiper I, Bloemberg GV, Lugtenberg BJJ (2001a) Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol Plant Microbe Interact 10:1197–1205

    Article  Google Scholar 

  25. Kuiper I, Kravchenko LV, Bloemberg GV, Lugtenberg BJJ (2001b) Pseudomonas putida strain PCL1444, selected for efficient root colonization and naphthalene degradation, effectively utilizes root exudates components. Mol Plant Microbe Interact 7:734–741

    Google Scholar 

  26. Kuiper I, Lagendijk E, Bloemberg G, Lugtenberg BJJ (2004) Rhizoremediation: A beneficial plant-microbe interaction. Mol Plant-Microbe Interact 17:6–15

    Article  PubMed  CAS  Google Scholar 

  27. Kunz DA, Chapman PJ (1981) Isolation and characterization of spontaneously occurring TOL plasmid mutants of Pseudomonas putida HS1. J Bacteriol 146:952–964

    PubMed  CAS  Google Scholar 

  28. Laskowski DA, O’Melia FC, Griffith JD, Regoli AJ, Youngson CR, Goring CAI (1975) Effect of 2-chloro-6- (trichloromethyl)pyridine and its hydrolysis product 6-chloropicolinic acid on soil microorganisms. J Environ Qual 4:412–417

    Article  CAS  Google Scholar 

  29. Leahy JG, Tracy KD, Eley MH (2003) Degradation of mixtures of aromatic and chloroaliphatic hydrocarbons by aromatic hydrocarbon-degrading bacteria. FEMS Microbiol Ecol 43:271–276

    Article  CAS  PubMed  Google Scholar 

  30. Legendre P, Legendre L (1998) Numerical Ecology. Elsevier, Amsterdam

    Google Scholar 

  31. Lemanceau P, Bakker PAHM, De Kogel WJ, Alabouvette C, Schippers B (1992) Effect of pseudobactin 358 production by Pseudomonas putida WC358 on suppression of Fusarium wilt of carnations by nonpathogenic Fusarium oxysporum Fo47. Appl Environ Microbiol 58:2978–2982

    PubMed  CAS  Google Scholar 

  32. Lewis TA, Paszczynski A, Wylie SWG, Jeedigunta S, Lee CH, Crawford RL (2001) Carbon tetrachloride dechlorination by the bacterial transition metal chelator pyridine-2,6-bis(thiocarboxylic acid). Environ Sc Technol 35:552–559

    Article  CAS  Google Scholar 

  33. Liu S, Suflita JM (1993) Ecology and evolution of microbial populations for bioremediation. Trends Biotechnol 11:344–352

    Article  PubMed  CAS  Google Scholar 

  34. Loper J, Buyer JS (1991) Siderophore in microbial interactions on plant surfaces. Mol Plant Microbe Interact 4:5–13

    CAS  Google Scholar 

  35. Mallakin A, Ward OP (1996) Degradation of BTEX compounds in liquid media and in peat biofilters. J Ind Microbiol 16:309–318

    Article  CAS  Google Scholar 

  36. Molina L, Ramos C, Duque E, Ronchel MC, Garcia JM, Wyke L, Ramos JL (2000) Survival of Pseudomonas putida KT2440 in soil and in the rhizosphere of plants under greenhouse and environmental conditions. Soil Biol Biochem 32:315–321

    Article  CAS  Google Scholar 

  37. Ongena M, Daayf F, Jacques P, Thonart P, Benhamou N, Paulitz TC, Cornelis P, Koedam N, Belanger RR (1999) Protection of cucumber against Pythium root rot by fluorescent pseudomonads: Predominant role of induced resistance over siderophores and antibiosis. Plant Pathol 48:66–76

    Article  Google Scholar 

  38. Ongena M, Giger A, Jacques P, Dommes J, Thonart P (2002) Study of bacterial determinants involved in the induction of systemic resistance in bean by Pseudomonas putida BTP1. Eur J Plant Pathol 108:187–196

    Article  CAS  Google Scholar 

  39. Osborn AM, Moore ERB, Timmis KN (2000) An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol 2:39–50

    Article  PubMed  CAS  Google Scholar 

  40. Pagliaccia D, Ferrin D, Stanghellini ME (2007) Chemo-biological suppression of root-infecting zoosporic pathogens in recirculating hydroponic systems. Plant Soil 299:163–179

    Article  CAS  Google Scholar 

  41. Pal, KK, McSpadden Gardener, B (2006) Biological control of plant pathogens. The Plant Health Instructor DOI 10.1094/PHI-A-2006–1117–02

  42. Paulitz TC, Belanger RR (2001) Biological control in greenhouse systems. Ann Rev Phytopathol 39:103–133

    Article  CAS  Google Scholar 

  43. Phoenix P, Keane A, Patel A, Bergeron H, Ghoshal S, Lau PCK (2003) Characterization of a new solvent-responsive gene locus in Pseudomonas putida F1 and its functionalization as a versatile biosensor. Environ Microbiol 5:1309–1327

    Article  PubMed  CAS  Google Scholar 

  44. Ploper LD, Backman PA, Rodriguez-Kabana R (1992) Enhanced natural biological control of apple fruit diseases by applications of biopolymers. Biol Control Tests 7:3

    Google Scholar 

  45. Powell SJ, Prosser JI (1986) Effect of copper on inhibition by nitrapyrin of growth of Nitrosomonas europaea. Curr Microbiol 14:177–179

    Article  CAS  Google Scholar 

  46. Raaijmakers JM, Leeman M, van Oorschot MMP, Van der Sluis I, Schippers B, Bakker PAHM (1995) Dose-response relationships in biological control of Fusarium wilt of radish by Pseudomonas spp. Phytopathology 85:1075–1080

    Article  Google Scholar 

  47. Ramos JL, Diaz E, Dowling D, de Lorenzo V, Molin S, O’Gara F et al (1994) The behavior of bacteria designed for biodegradation. Nat Biotechnol 12:1349–1356

    Article  CAS  Google Scholar 

  48. Reichman SM, Parker DR (2007) Critical evaluation of three indirect assays for quantifying phytosiderophores released by the roots of Poaceae. Eur J Soil Sci 58:844–853

    Article  Google Scholar 

  49. Röling WFM, Milner MG, Jones DM, Lee K, Daniel F, Swannell RJP, Head IM (2002) Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl Environ Microbiol 68:5537–5548

    Article  PubMed  CAS  Google Scholar 

  50. Runia, W (1996) Disinfection of recirculation water from closed production systems. In: van Os EA (Ed.) Proceedings of the Seminar on Closed Production Systems. pp 20–24

  51. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  PubMed  CAS  Google Scholar 

  52. Sebat JL, Paszczynski AJ, Cortese MS, Crawford RL (2001) Antimicrobial properties of pyridine-2,6-dithiocarboxylic acid, a metal chelator produced by Pseudomonas spp. Appl Environ Microbiol 67:3934–3942

    Article  PubMed  CAS  Google Scholar 

  53. Segura A, Duque E, Mosqueda G, Ramos JL, Junker F (1999) Multiple responses of Gram-negative bacteria to organic solvents. Environ Microbiol 1:191–198

    Article  PubMed  CAS  Google Scholar 

  54. Shattuck GE, Alexander M (1963) A differential inhibitor of nitrifying microorganisms. Soil Sci Soc Am Proc 27:600–601

    Article  CAS  Google Scholar 

  55. Shim H, Yang ST (1999) Biodegradation of benzene, toluene, ethylbenzene, and o-xylene by a coculture of Pseudomonas putida and Pseudomonas fluorescens immobilized in a fibrous-bed bioreactor. J Biotechnol 67:99–112

    Article  PubMed  CAS  Google Scholar 

  56. Slininger PJ, Jackson MA (1992) Nutritional factors regulating growth and accumulation of phenazine 1-carboxylic acid by Pseudomonas fluorescens 2–79. Appl Microbiol Biotechnol 37:388–392

    Article  CAS  Google Scholar 

  57. Stallwood B, Shears J, Williams PA, Hughes KA (2005) Low temperature bioremediation of oil-contaminated soil using biostimulation and bioaugmentation with a Pseudomonas sp. from maritime Antarctica. J Appl Microbiol 99:794–802

    Article  PubMed  CAS  Google Scholar 

  58. Stanghellini ME, Miller RM (1997) Biosurfactants: Their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Dis 81:4–12

    Article  CAS  Google Scholar 

  59. Stanghellini ME, Rasmussen SL (1994) Hydroponics: A solution for zoosporic pathogens. Plant Dis 78:1129–1138

    Article  Google Scholar 

  60. Timmis KN (2002) Pseudomonas putida: A cosmopolitan opportunist par excellence. Environ Microbiol 4:779–781

    Article  PubMed  Google Scholar 

  61. Trenkel ME (1997) Improving Fertilizer Use Efficiency - Control-Release and Stabilized Fertilizers in Agriculture. International Fertilizer Industry Association, Paris

    Google Scholar 

  62. Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Ann Rev Phytopathol 36:453–483

    Article  Google Scholar 

  63. Vannelli T, Hooper AB (1992) Oxidation of nitrapyrin to 6-chloropicolinic acid by the ammonia-oxidizing bacterium Nitrosomonas europaea. Appl Environ Microbiol 58:2321–2325

    PubMed  CAS  Google Scholar 

  64. Van Os EA, Postma J (2000) Prevention of root diseases in closed soilless growing systems by microbial optimization and slow sand filtration. Acta Hortic 532:97–102

    Google Scholar 

  65. Walsh UF, Morrissey JP, O’Gara F (2001) Pseudomonas for biocontrol of phytopathogens: From functional genomics to commercial exploitation. Curr Opin Biotechnol 12:289–295

    Article  PubMed  CAS  Google Scholar 

  66. Weller DM, Raaijmakers JM, McSpadden Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific suppressiveness to plant pathogens. Ann Rev Phytopathol 40:309–348

    Article  CAS  Google Scholar 

  67. Wilson M, Campbell HL, Ji P, Jones JB, Cuppels DA (2002) Biological control of bacterial speck of tomato under field conditions at several locations in North America. Phytopathology 92:1284–1292

    Article  PubMed  CAS  Google Scholar 

  68. Wilson M, Savka MA, Hwang I, Farrand SK, Lindow SE (1995) Altered epiphytic colonization of mannityl opine-producing transgenic tobacco plants by a mannityl opine-catabolizing strain of Pseudomonas syringae. Appl Environ Microbiol 61:2151–2158

    PubMed  CAS  Google Scholar 

  69. Yamada M, Ogiso M (1997) Control of soil-borne diseases using antagonistic microorganisms. IV. Study on the available substrates for antagonistic bacterial strains to control Fusarium wilt of tomatoes. Res Bull Aichi-Ken Agric Res Cent 29:141–144

    CAS  Google Scholar 

  70. Zhou E, Crawford RL (1995) Effects of oxygen, nitrogen, and temperature on gasoline biodegradation in soil. Biodegradation 6:127–140

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank J. Adaskaveg, D.H. Ferrin, I. J. Misaghi, P. Barghini, and G. Vidalakis for editorial assistance and for technical help; H. R. Azad, for support with the BIOLOG test; D. Parker, A. Seyfferth and D. E. Crowley for their fruitful discussion and collaboration. This research was partially supported by grants from the USDA/ARS Floral and Nursery Crop Research Initiative and by a grant from ISPESL, Italy (Project B96-2DIPIA/03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Pagliaccia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pagliaccia, D., Merhaut, D., Colao, M.C. et al. Selective Enhancement of the Fluorescent Pseudomonad Population After Amending the Recirculating Nutrient Solution of Hydroponically Grown Plants with a Nitrogen Stabilizer. Microb Ecol 56, 538–554 (2008). https://doi.org/10.1007/s00248-008-9373-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-008-9373-z

Keywords

Navigation