Skip to main content

Advertisement

Log in

Cultivation-Based Assessment of Lysogeny Among Soil Bacteria

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Lysogeny has long been proposed as an important long-term maintenance strategy for autochthonous soil bacteriophages (phages). Whole genome sequence data indicate that prophage-derived sequences pervade prokaryotic genomes, but the connection between inferred prophage sequence and an active temperate phage is tenuous. Thus, definitive evidence of phage production from lysogenic prokaryotes will be critical in determining the presence and extent of temperate phage diversity existing as prophage within bacterial genomes and within environmental contexts such as soils. This study optimized methods for systematic and definitive determination of lysogeny within a collection of autochthonous soil bacteria. Twenty bacterial isolates from a range of Delaware soil environments (five from each soil) were treated with the inducing agents mitomycin C (MC) or UV light. Six isolates (30%) carried inducible temperate phages as evidenced by an increase in virus direct counts. The magnitude of induction response was highly dependent upon specific induction conditions, and corresponding burst sizes ranged from 1 to 176. Treatment with MC for 30 min yielded the largest induction responses for three of the six lysogens. Morphological analysis revealed that four of the lysogens produced lambda-like Siphoviridae particles, whereas two produced Myoviridae particles. Additionally, pulsed-field gel electrophoresis data indicated that two of the six lysogens were polylysogens, producing more than one distinct type of phage particle. These results suggest that lysogeny is relatively common among soil bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Abebe HM, Sadowsky MJ, Kinkle BK, Schmidt EL (1992) Lysogeny in Bradyrhizobium japonicum and its effect on soybean nodulation. Appl Environ Microbiol 58:3360–3366

    PubMed  CAS  Google Scholar 

  2. Ackermann HW, DuBow MS (1987) Viruses of Prokaryotes, vol. 1. General Properties of Bacteriophages. CRC, Boca Raton, FL

    Google Scholar 

  3. Aertsen A, Van Houdt R, Vanoirbeek K, Michiels CW (2004) An SOS response induced by high pressure in Escherichia coli. J Bacteriol 186:6133–6141

    Article  PubMed  CAS  Google Scholar 

  4. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–10

    PubMed  CAS  Google Scholar 

  5. Anderson LM, Bott KF (1985) DNA packaging by the Bacillus subtilis defective bacteriophage PBSX. J Virol 54:773–780

    PubMed  CAS  Google Scholar 

  6. Ashelford KE, Day MJ, Fry JC (2003) Elevated abundance of bacteriophage infecting bacteria in soil. Appl Environ Microbiol 69:285–289

    Article  PubMed  CAS  Google Scholar 

  7. Ashelford KE, Norris SJ, Fry JC, Bailey MJ, Day MJ (2000) Seasonal population dynamics and interactions of competing bacteriophages and their host in the rhizosphere. Appl Environ Microbiol 66:4193–4199

    Article  PubMed  CAS  Google Scholar 

  8. Ausbel, FM, Brent, R, Kingston, RE, Moore, DD, Seidman, JG, Smith, JA, Struhl, K (Eds.) (1999) Short Protocols in Molecular Biology, 4th ed. Wiley, New York

  9. Bertani G (2004) Lysogeny at mid-twentieth century: P1, P2, and other experimental, systems. J Bacteriol 186:595–600

    Article  PubMed  CAS  Google Scholar 

  10. Birren B, Lai E (1993) Pulsed Field Gel Electrophoresis: A Practical Guide. Academic, New York, NY

    Google Scholar 

  11. Bongiorni L, Magagnini M, Armeni M, Noble R, Danovaro R (2005) Viral production, decay rates, and life strategies along a trophic gradient in the north Adriatic sea. Appl Environ Microbiol 71:6644–6650

    Article  PubMed  CAS  Google Scholar 

  12. Bratbak G, Heldal M, Thingstad TF, Riemann B, Haslund OH (1992) Incorporation of viruses into the budget of microbial C-transfer. A first approach. Mar Ecol Prog Ser 83:273–280

    Article  Google Scholar 

  13. Buchen-Osmond, C (2000 2005, posting date) International Committee on Taxonomy of Viruses: List of Criteria Demarcating Different Virus Taxa (Online)

  14. Campbell A (2006) General aspects of lysogeny. In: Calendar R (ed.) The Bacteriophages. 2nd ed. Oxford University Press, New York, pp 66–73

    Google Scholar 

  15. Canchaya C, Desiere F, McShan WM, Ferretti JJ, Parkhill J, Brussow H (2002) Genome analysis of an inducible prophage and prophage remnants integrated in the Streptococcus pyogenes strain SF370. Virology 302:245–258

    Article  PubMed  CAS  Google Scholar 

  16. Canchaya C, Proux C, Fournous G, Bruttin A, Brussow H (2003) Prophage genomics. Microbiol Mol Biol Rev 67:473–473

    Article  CAS  Google Scholar 

  17. Chen F, Wang K, Stewart J, Belas R (2006) Induction of multiple prophages from a marine bacterium: a genomic approach. Appl Environ Microbiol 72:4995–5001

    Article  PubMed  CAS  Google Scholar 

  18. Chibani-Chennoufi S, Bruttin A, Dillmann ML, Brussow H (2004) Phage-host interaction: an ecological perspective. J Bacteriol 186:3677–3686

    Article  PubMed  CAS  Google Scholar 

  19. Cochran PK, Kellogg CA, Paul JH (1998) Prophage induction of indigenous marine lysogenic bacteria by environmental pollutants. Mar Ecol Prog Ser 164:125

    Article  CAS  Google Scholar 

  20. Cochran PK, Paul JH (1998) Seasonal abundance of lysogenic bacteria in a subtropical estuary. Appl Environ Microbiol 64:2308

    PubMed  CAS  Google Scholar 

  21. Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM (2005) The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:D294–D296

    Article  PubMed  CAS  Google Scholar 

  22. Desiere F, Lucchini S, Canchaya C, Ventura M, Brussow H (2002) Comparative genomics of phages and prophages in lactic acid bacteria. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 82:73–91

    Article  CAS  Google Scholar 

  23. Espeland EM, Lipp EK, Huq A, Colwell RR (2004) Polylysogeny and prophage induction by secondary infection in Vibrio cholerae. Environ Microbiol 6:760–763

    Article  PubMed  CAS  Google Scholar 

  24. Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature (London) 399:541–548

    Article  CAS  Google Scholar 

  25. Gnezda-Meijer K, Mahne I, Poljsak-Prijatelj M, Stopar D (2006) Host physiological status determines phage-like particle distribution in the lysate. FEMS Microbiol Ecol 55:136–145

    Article  PubMed  CAS  Google Scholar 

  26. Hadas H, Einav M, Fishov I, Zaritsky A (1997) Bacteriophage T4 development depends on the physiology of its host Escherichia coli. Microbiology UK 143:179–185

    Article  CAS  Google Scholar 

  27. Hayashi T, Makino K, Ohnishi M, Kurokawa K, Ishii K, Yokoyama K, Han CG, Ohtsubo E, Nakayama K, Murata T, Tanaka M, Tobe T, Iida T, Takami H, Honda T, Sasakawa C, Ogasawara N, Yasunaga T, Kuhara S, Shiba T, Hattori M, Shinagawa H (2001) Complete genome sequence of enterohemorrhagic Escherichia coli O157: H7 and genomic comparison with a laboratory strain K-12. DNA Res 8:11–22

    Article  PubMed  CAS  Google Scholar 

  28. Herron PR, Wellington EMH (1994) Population-dynamics of phage-host interactions and phage conversion of Streptomycetes in soil. FEMS Microbiol Ecol 14:25–32

    Article  Google Scholar 

  29. Jiang SC, Paul JH (1996) Occurrence of lysogenic bacteria in marine microbial communities as determined by prophage induction. Mar Ecol Prog Ser 142:27–38

    Article  Google Scholar 

  30. Jiang SC, Paul JH (1994) Seasonal and diel abundance of viruses and occurence of lysogeny/bacteriocinogeny in the marine environment. Mar Ecol Prog Ser 104:163–172

    Article  Google Scholar 

  31. Kholodii GY, Mindlin SZ (1985) Formation and genetic-structure of polylysogens for lambda, phi-80 and their hybrid lambda-Att80 on infection of wild-type Escherichia coli. Genetika 21:530–540

    PubMed  Google Scholar 

  32. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt, E, Goodfellow, M (Eds.) Nucleic Acid Techniques in Bacterial Systematics. Wiley, New York, pp 115–175

    Google Scholar 

  33. Langley RD, Kenna T, Vandamme P, Ure R, Govan JRW (2003) Lysogeny and bacteriophage host range within the Burkholderia cepacia complex. J Med Microbiol 52:483–490

    Article  PubMed  Google Scholar 

  34. Leffers G, Rao VB (1996) A discontinuous headful packaging model for packaging less than headful length DNA molecules by bacteriophage T4. J Mol Biol 258:839–850

    Article  PubMed  CAS  Google Scholar 

  35. Lewis RJ, Brannigan JA, Offen WA, Smith I, Wilkinson AJ (1998) An evolutionary link between sporulation and prophage induction in the structure of a repressor: anti-repressor complex. J Mol Biol 283:907–912

    Article  PubMed  CAS  Google Scholar 

  36. Lwoff A, Siminovitch L, Kjeldgaard N (1950) Induction de la production de bacteriophages chez une bactérie lysogène. Ann Inst Pasteur 79:815–859

    CAS  Google Scholar 

  37. Madan NJ, Marshall WA, Laybourn-Parry J (2005) Virus and microbial loop dynamics over an annual cycle in three contrasting Antarctic lakes. Freshw Biol 50:1291–1300

    Article  Google Scholar 

  38. Marsh P, Wellington EMH (1994) Phage–host interactions in soil. FEMS Microbiol Ecol 15:99–107

    Article  CAS  Google Scholar 

  39. McDaniel L, Griffin DW, Crespo-Gomez J, McLaughlin MR, Paul JH (2001) Evaluation of marine bacterial lysogens for development of a marine prophage induction assay. Mar Biotechnol 3:528–535

    Article  PubMed  CAS  Google Scholar 

  40. Mei ML, Danovaro R (2004) Virus production and life strategies in aquatic sediments. Limnol Oceanogr 49:459–470

    Article  Google Scholar 

  41. Miller RV (2006) Marine phages. In: Calendar R (Ed.) The Bacteriophages. 2nd ed. Oxford University Press, New York, pp 534–544

    Google Scholar 

  42. Nakagawa I, Kurokawa K, Yamashita A, Nakata M, Tomiyasu Y, Okahashi N, Kawabata S, Yamazaki K, Shiba T, Yasunaga T, Hayashi H, Hattori M, Hamada S (2003) Genome sequence of an M3 strain of Streptococcus pyogenes reveals a large-scale genomic rearrangement in invasive strains and new insights into phage evolution. Genome Res 13:1042–1055

    Article  PubMed  CAS  Google Scholar 

  43. Noble RT, Fuhrman JA (2000) Rapid virus production and removal as measured with fluorescently labeled viruses as tracers. Appl Environ Microbiol 66:3790–3797

    Article  PubMed  CAS  Google Scholar 

  44. Pantastico-Caldas M, Duncan KE, Istock CA, Bell JA (1992) Population dynamics of bacteriophage and Bacillus subtilis in soil. Ecology 73:1888–1902

    Article  Google Scholar 

  45. Prigent M, Leroy M, Confalonieri F, Dutertre M, DuBow MS (2005) A diversity of bacteriophage forms and genomes can be isolated from the surface sands of the Sahara Desert. Extremophiles 9:289–296

    Article  PubMed  CAS  Google Scholar 

  46. Ranquet C, Toussaint A, de Jong H, Maenhaut-Michel G, Geiselmann J (2005) Control of bacteriophage Mu lysogenic repression. J Mol Biol 353:186–195

    Article  PubMed  CAS  Google Scholar 

  47. Rautenshtein YI, Soloveva NY, Moskalenko LN, Filatova AD (1975) New phages of a polylysogenic culture of Actinomyces griseus. Microbiology 44:621–625

    Google Scholar 

  48. Reynolds RB, Reddy A, Thorne CB (1988) 5 unique temperate phages from a polylysogenic strain of Bacillus thuringiensis subsp Aizawai. J Gen Microbiol 134:1577–1585

    PubMed  CAS  Google Scholar 

  49. Rice G, Stedman K, Snyder J, Wiedenheft B, Willits D, Brumfield S, McDermott T, Young MJ (2001) Viruses from extreme thermal environments. Proc Natl Acad Sci USA 98:13341–13345

    Article  PubMed  CAS  Google Scholar 

  50. Roberts JW, Devoret R (1983) Lysogenic induction. In: Hendrix RW (Ed.) Lambda II. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 123–144

    Google Scholar 

  51. Romig WR, Brodetsky AM (1961) Isolation and preliminary characterization of bacteriophages for Bacillus subtilis. J Bacteriol 82:135–141

    PubMed  CAS  Google Scholar 

  52. Russel M, Model P (2006) Filamentous phage. In: Calendar R (Ed.) The Bacteriophages. 2nd ed. Oxford University Press, New York, pp 146–160

    Google Scholar 

  53. Schimff W, Steiger H, Hoerschelmann D (1975) Different types of thermoconditional clear plaque-mutants and prophage induction by heat or cold of Serratia phage chi. Zeitschrift fur Allg Mikrobiol 15:275–280

    Article  CAS  Google Scholar 

  54. Silver-Mysliwiec TH, Bramucci MG (1990) Bacteriophage-enhanced sporulation: comparison of spore-converting bacteriophages PMB12 and SP10. J Bacteriol 172:1948–1953

    PubMed  CAS  Google Scholar 

  55. Steensma HY, Sondermeijer PJA (1977) A counting method for determining the burst size of defective phages from Bacillus subtilis. Antonie Van Leeuwenhoek 43:305–316

    Article  PubMed  CAS  Google Scholar 

  56. Steward GF, Smith DC, Azam F (1996) Abundance and production of bacteria and viruses in the Bering and Chukchi seas. Mar Ecol Prog Ser 131:287–300

    Article  Google Scholar 

  57. Stewart FM, Levin BR (1984) The population biology of bacterial viruses: why be temperate? Theor Pop Biol 26:93–117

    Article  CAS  Google Scholar 

  58. Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181

    Article  PubMed  CAS  Google Scholar 

  59. Weinbauer MG, Peduzzi P (1994) Frequency, size and distribution of bacteriophages in different marine bacterial morphotypes. Mar Ecol Prog Ser 108:11–20

    Article  Google Scholar 

  60. Weinbauer MG, Suttle CA (1999) Lysogeny and prophage induction in coastal and offshore bacterial communities. Aquat Microb Ecol 18:217–225

    Article  Google Scholar 

  61. Weinbauer MG, Suttle CA (1996) Potential significance of lysogeny to bacteriophage production and bacterial mortality in coastal waters of the Gulf of Mexico. Appl Environ Microbiol 62:4374–4380

    PubMed  CAS  Google Scholar 

  62. Weitz JS, Hartman H, Levin SA (2005) Coevolutionary arms race between bacteria and bacteriophage. Proc Natl Acad Sci USA 102:9535–9540

    Article  PubMed  CAS  Google Scholar 

  63. Wen K, Ortmann AC, Suttle CA (2004) Accurate estimation of viral abundance by epifluorescence microscopy. Appl Environ Microbiol 70:3862–3867

    Article  PubMed  CAS  Google Scholar 

  64. Wilhelm SW, Brigden SM, Suttle CA (2002) A dilution technique for the direct measurement of viral production: a comparison in stratified and tidally mixed coastal waters. Microb Ecol 43:168–173

    Article  PubMed  CAS  Google Scholar 

  65. Williamson KE, Radosevich M, Wommack KE (2005) Abundance and diversity of viruses in six Delaware soils. Appl Environ Microbiol 71:3119–3125

    Article  PubMed  CAS  Google Scholar 

  66. Williamson KE, Radosevich M, Smith DW, Wommack KE (2007) Incidence of lysogeny within temperate and extreme soil environments. Environ Microbiol 9:2563–2574

    Article  PubMed  CAS  Google Scholar 

  67. Williamson KE, Wommack KE, Radosevich M (2003) Sampling natural viral communities from soil for culture-independent analyses. Appl Environ Microbiol 69:6628–6633

    Article  PubMed  CAS  Google Scholar 

  68. Williamson SJ, Houchin LA, McDaniel L, Paul JH (2002) Seasonal variation in lysogeny as depicted by prophage induction in Tampa Bay, Florida. Appl Environ Microbiol 68:4307–4314

    Article  PubMed  CAS  Google Scholar 

  69. Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Molec Biol Rev 64:69–114

    Article  CAS  Google Scholar 

  70. Zimmer M, Scherer S, Loessner MJ (2002) Genomic analysis of Clostridium perfringens bacteriophage phi 3626, which integrates into guaA and possibly affects sporulation. J Bacteriol 184:4359–4368

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We wish to thank Kirk Czymmek and Debbie Powell of the Delaware Biotechnology Institute Bio-Imaging Center for technical assistance with electron microscopy, Yingbo Wang for her help with induction assays, and Danielle Winget for reading the manuscript. This work was supported by EPA STAR Graduate Fellowship U916129 to K. E. Williamson and the National Research Initiative of the USDA Cooperative State Research, Education, and Extension Service grant 2005-35107-15214 to K. E. Wommack.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Eric Wommack.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Table S1

Physical properties of soils (PDF 37.2 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williamson, K.E., Schnitker, J.B., Radosevich, M. et al. Cultivation-Based Assessment of Lysogeny Among Soil Bacteria. Microb Ecol 56, 437–447 (2008). https://doi.org/10.1007/s00248-008-9362-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-008-9362-2

Keywords

Navigation