Skip to main content
Log in

Abundance, Diversity, and Dynamics of Viruses on Microorganisms in Activated Sludge Processes

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

We examined the abundance of viruses on microorganisms in activated sludge and the dynamics of their community structure. Direct counting with epifluorescence microscopy and pulsed-field gel electrophoresis (PFGE) were applied to 20 samples from 14 full-scale wastewater treatment plants (wwtps) treating municipal, industrial, or animal wastewater. Furthermore, to observe the dynamics of viral community structure over time, a laboratory-scale sequencing batch reactor was operated for 58 days. The concentrations of virus particles in the wwtps, as quantified by epifluorescence microscopy, ranged from 4.2 × 107 to 3.0 × 109 mL−1. PFGE, improved by the introduction of a higher concentration of Tris–EDTA buffer in the DNA extraction step, was successfully used to profile DNA viruses in the activated sludge. Most of the samples from different wwtps commonly had bands in the 40–70 kb range. In the monitoring of viral DNA size distribution in the laboratory-scale reactor, some bands were observed stably throughout the experimental period, some emerged during the operation, and others disappeared. Rapid emergence and disappearance of two intense bands within 6 days was observed. Our data suggest that viruses—especially those associated with microorganisms—are abundant and show dynamic behavior in activated sludge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Amann, RI, Ludwig, W, Schleifer, KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143–169

    PubMed  CAS  Google Scholar 

  2. Arraj, A, Bohatier, J, Laveran, H, Traore, O (2005) Comparison of bacteriophage and enteric virus removal in pilot scale activated sludge plants. J Appl Microbiol 98: 516–524

    Article  PubMed  CAS  Google Scholar 

  3. Ashelford, KE, Day, MJ, Fry, JC (2003) Elevated abundance of bacteriophage infecting bacteria in soil. Appl Environ Microbiol 69: 285–289

    Article  PubMed  CAS  Google Scholar 

  4. Bergh, O, Borsheim, KY, Bratbak, G, Heldal, M (1989) High abundance of viruses found in aquatic environments. Nature 340: 467–468

    Article  PubMed  CAS  Google Scholar 

  5. Bitton, G (1987) Fate of bacteriophages in water and wastewater treatment plants. In: Goyal, SM, Gerba, CP, Bitton, G (Eds.) Phage Ecology. Wiley, New York, pp 181–195

    Google Scholar 

  6. Børsheim, KY (1993) Native marine bacteriophages. FEMS Microbiol Ecol 102: 141–159

    Article  Google Scholar 

  7. Chen, F, Suttle, CA, Short, SM (1996) Genetic diversity in marine algal virus communities as revealed by sequence analysis of DNA polymerase genes. Appl Environ Microbiol 62: 2869–2874

    PubMed  CAS  Google Scholar 

  8. Chen, F, Suttle, CA (1996) Evolutionary relationships among large double-stranded DNA viruses that infect microalgae and other organisms as inferred from DNA polymerase genes. Virology 219: 170–178

    Article  PubMed  CAS  Google Scholar 

  9. Danovaro, R, Dell’anno, A, Trucco, A, Serresi, M, Vanucci, S (2001) Determination of virus abundance in marine sediments. Appl Environ Microbiol 67: 1384–1387

    Article  PubMed  CAS  Google Scholar 

  10. Dias, F, Bhat, J (1965) Microbial ecology of activated sludge II bacteriophages, Bdellovibrio, coliforms and other organisms. Appl Microbiol 13: 257–261

    PubMed  CAS  Google Scholar 

  11. Ewert, DL, Paynter, MJ (1980) Enumeration of bacteriophages and host bacteria in sewage and the activated-sludge treatment process. Appl Environ Microbiol 39: 576−583

    PubMed  CAS  Google Scholar 

  12. Fuhrman, JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399: 541–548

    Article  PubMed  CAS  Google Scholar 

  13. Fuhrman, JA, Noble, RT (1995) Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol Oceanogr 40: 1236–1242

    Article  Google Scholar 

  14. Fuller, NJ, Wilson, WH, Joint, IR, Mann, NH (1998) Occurrence of a sequence in marine cyanophages similar to that of T4 g20 and its application to PCR-based detection and quantification techniques. Appl Environ Microbiol 64: 2051–2060

    PubMed  CAS  Google Scholar 

  15. Gabor, EM, De Vries, EJ, Janssen, DB (2003) Efficient recovery of environmental DNA for expression cloning by indirect extraction methods. FEMS Microbiol Ecol 44: 153–163

    Article  CAS  PubMed  Google Scholar 

  16. Hantula, J, Kurki, A, Vuoriranta, P, Bamford, D (1991) Ecology of bacteriophages infecting activated sludge bacteria. Appl Environ Microbiol 57: 2147–2151

    PubMed  CAS  Google Scholar 

  17. Hennes, KP, Simon, M (1995) Significance of bacteriophages for controlling bacterioplankton growth in a mesotrophic lake. Appl Environ Microbiol 61: 333–340

    PubMed  CAS  Google Scholar 

  18. Japan Sewage Works Association (1997) Testing Methods of Sewage. Tokyo, Japan: Japan Sewage Works Association. Gesui Shiken Houhou (in Japanese)

  19. Jardillier, L, Bettarel, Y, Richardot, M, Bardot, C, Amblard, C, Sime-Ngando, T, Debroas, D (2005) Effects of viruses and predators on prokaryotic community composition. Microb Ecol 50: 557–569

    Article  PubMed  Google Scholar 

  20. Jiang, S, Steward, G, Jellison, R, Chu, W, Choi, S (2003) Abundance, distribution, and diversity of viruses in alkaline, hypersaline Mono Lake, California. Microb Ecol 47: 9–17

    Article  Google Scholar 

  21. Jiang, S, Fu, W, Chu, W, Fuhrman, JA (2003) The vertical distribution and diversity of marine bacteriophage at a station off Southern California. Microb Ecol 45: 399–410

    Article  PubMed  CAS  Google Scholar 

  22. Khan, MA, Satoh, H, Mino, T, Katayama, H, Kurisu, F, Matsuo, T (2002) Bacteriophage–host interaction in the enhanced biological phosphate removing activated sludge system. Water Sci Technol 46: 39–43

    PubMed  CAS  Google Scholar 

  23. Khan, MA, Satoh, H, Katayama, H, Kurisu, F, Mino, T (2002) Bacteriophages isolated from activated sludge processes and their polyvalency. Water Res 36: 3364–3370

    Article  PubMed  CAS  Google Scholar 

  24. Kim, TD, Honda, H, Shiragami, N, Yano, K, Unno, H (1994) Efficient condition for the elution of Poliovirus transferred to activated sludge. J Jpn Soc Water Environ 17: 509–516

    Google Scholar 

  25. Klieve, AV, Swain, RA (1993) Estimation of ruminal bacteriophage numbers by pulsed-field gel electrophoresis and laser densitometry. Appl Environ Microbiol 59: 2299–2303

    PubMed  CAS  Google Scholar 

  26. Lee SH, Satoh, H, Katayama, H, Mino, T (2004) Isolation, physiological characterization of bacteriophages from enhanced biological phosphorus removal activated sludge and their putative role. J Microbiol Biotechnol 14: 730–736

    CAS  Google Scholar 

  27. Lee, SH, Onuki, M, Satoh, H, Mino, T (2006) Isolation, characterization of bacteriophages specific to Microlunatus phosphovorus and their application for rapid host detection. Lett Appl Microbiol 42: 259–264

    Article  PubMed  CAS  Google Scholar 

  28. Lodder, WJ, de Roda Husman, AM (2005) Presence of Noroviruses and other enteric viruses in sewage and surface waters in the Netherlands. Appl Environ Microbiol 71: 1453–1461

    Article  PubMed  CAS  Google Scholar 

  29. Manz, W, Wagner, M, Amann, R, Schleifer, KH (1994) In situ characterization of the microbial consortia active in two wastewater treatment plants. Water Res 28: 1715–1723

    Article  CAS  Google Scholar 

  30. Mathias, CB, Kirschner, AKT, Velimirov, B (1995) Seasonal variations of virus abundance and viral control of the bacterial production in a backwater system of the Danube River. Appl Environ Microbiol 61: 3734–3740

    PubMed  CAS  Google Scholar 

  31. Moeseneder, MM, Winter, C, Herndl, GJ (2001) Horizontal and vertical complexity of attached and free-living bacteria of the eastern Mediterranean Sea, determined by 16S rDNA and 16S rRNA fingerprints. Limnol Oceanogr 46: 95–107

    Article  CAS  Google Scholar 

  32. Muyzer, G, de Waal, EC, Uitterlinden, AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ Microbiol 59: 695–700

    PubMed  CAS  Google Scholar 

  33. Noble, RT, Fuhrman, JA (1998) Use of SYBR Green I for rapid epifluoroscence counts of marine viruses and bacteria. Aquat Microb Ecol 14: 113–118

    Google Scholar 

  34. Otawa, K, Lee, SH, Onuki, M, Satoh, H, Mino, T (2005) Bacteriophages in activated sludge analyzed by pulsed field gel electrophoresis (PFGE). 4th IWA Activated Sludge Population Dynamics Specialist Conference: AS107 (full paper)

  35. Paul, JH (1999) Microbial gene transfer: an ecological perspective. J Mol Microbiol Biotechnol 1: 45–50

    PubMed  CAS  Google Scholar 

  36. Paul, JH, Frischer, ME, Thurmond, JM (1991) Gene transfer in marine water column and sediment microcosms by natural plasmid transformation. Appl Environ Microbiol 57: 1509–1515

    PubMed  CAS  Google Scholar 

  37. Reanney, DC, Ackermann, HW (1982) Comparative biology and evolution of bacteriophages. Adv Virus Res 27: 205–280

    Article  PubMed  CAS  Google Scholar 

  38. Rohwer, F, Edwards, R (2002) The phage proteomic tree: a genome-based taxonomy for phage. J Bacteriol 184: 4529–4535

    Article  PubMed  CAS  Google Scholar 

  39. Sandaa, RA, Skjoldal, EF, Bratbak, G (2003) Virioplankton community structure along a salinity gradient in a solar saltern. Extremophiles 7: 347–351

    Article  PubMed  Google Scholar 

  40. Short, CM, Suttle, CA (2005) Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments. Appl Environ Microbiol 71: 480–486

    Article  PubMed  CAS  Google Scholar 

  41. Steward, GF (2001) Fingerprinting viral assemblages by pulsed field gel electrophoresis. In: Paul, J (Ed.) Methods in Microbiology, vol 30. Academic Press, San Diego, pp 85–103

    Google Scholar 

  42. Steward, GF, Montiel, JL, Azam, F (2000) Genome size distributions indicate variability and similarities among marine viral assemblages from diverse environments. Limnol Oceanogr 45: 1697–1706

    Article  Google Scholar 

  43. Suttle, CA (1994) The significance of viruses to mortality in aquatic microbial communities. Microb Ecol 28: 237–243

    Article  Google Scholar 

  44. Suttle, CA, Chan, AM (1994) Dynamics and distribution of cyanophages and their effect on marine Synechococcus spp. Appl Environ Microbiol 60: 3167–3174

    PubMed  CAS  Google Scholar 

  45. Swain, RA, Nolan, JV, Klieve, AV (1996) Natural variability and diurnal fluctuations within the bacteriophage population of the rumen. Appl Environ Microbiol 62: 994–997

    PubMed  CAS  Google Scholar 

  46. Weinbauer, MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol, Rev 28: 127–181

    Article  CAS  Google Scholar 

  47. Weinbauer, MG, Rassoulzadegan, F (2004) Are viruses driving microbial diversification and diversity? Environ Microbiol 6: 1–11

    Article  PubMed  Google Scholar 

  48. Williamson, KE, Wommack, KE, Radosevich, M (2003) Sampling natural viral communities from soil for culture-independent analyses. Appl Environ Microbiol 69: 6628–6633

    Article  PubMed  CAS  Google Scholar 

  49. Winter, C, Smit, A, Herndl, GJ, Weinbauer, MG (2004) Impact of virioplankton on archaeal and bacterial community richness as assessed in seawater batch cultures. Appl Environ Microbiol 70: 804–813

    Article  PubMed  CAS  Google Scholar 

  50. Wommack, KE, Ravel, J, Hill, RT, Chun, J, Colwell, RR (1999) Population dynamics of Chesapeake Bay virioplankton: total-community analysis by pulsed-field gel electrophoresis. Appl Environ Microbiol 65: 231–240

    PubMed  CAS  Google Scholar 

  51. Wommack, KE, Ravel, J, Hill, RT, Colwell, RR (1999) Hybridization analysis of Chesapeake Bay virioplankton. Appl Environ Microbiol 65: 241–250

    PubMed  CAS  Google Scholar 

  52. Wommack, KE, Colwell, RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64: 69–114

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Tokyo Metropolitan Government, Yutaka Nakai (Tohoku University), Yasuhiko Oba (Miyagi Prefectural Livestock Experiment Station), Eisuke Kawamura (Kanagawa Prefectural Livestock Industry Research Institute), and Futoshi Koyama (Fukuoka Agricultural Research Center) for their assistance in activated sludge sampling. We thank Associate Professor Hideaki Nojiri and Kengo Inoue (graduate student) of the Biotechnology Research Center at The University of Tokyo for their technical assistance and helpful discussions.

This work was financially supported by the Kurita Water and Environment Foundation. It was also partly supported by the 21st Century Center of Excellence (COE) research program “Elucidation of Language Structure and Semantics behind Genome and Life System” (JSPS2004-K07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyasu Satoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otawa, K., Lee, S.H., Yamazoe, A. et al. Abundance, Diversity, and Dynamics of Viruses on Microorganisms in Activated Sludge Processes. Microb Ecol 53, 143–152 (2007). https://doi.org/10.1007/s00248-006-9150-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9150-9

Keywords

Navigation