Skip to main content

Advertisement

Log in

A Targeted Real-Time PCR Assay for Studying Naphthalene Degradation in the Environment

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

A quantitative real-time polymerase chain reaction (PCR) assay was developed for monitoring naphthalene degradation during bioremediation processes. The phylogenetic affiliations of known naphthalene-hydroxylating dioxygenase genes were determined to target functionally related bacteria, and degenerate primers were designed on the basis of the close relationships among dioxygenase genes identified from naphthalene-degrading Proteobacteria. Evaluation of the amplification specificity demonstrated that the developed real-time PCR assay represents a rapid, precise means for the group-specific enumeration of naphthalene-degrading bacteria. According to validation with bacterial pure cultures, the assay discriminated between the targeted group of naphthalene dioxygenase sequences and genes in other naphthalene or aromatic hydrocarbon-degrading bacterial strains. Specific amplification of gene fragments sharing a high sequence similarity with the genes included in the assay design was also observed in soil samples recovered from large-scale remediation processes. The target genes could be quantified reproducibly at over five orders of magnitude down to 3 × 102 gene copies. To investigate the suitability of the assay in monitoring naphthalene biodegradation, the assay was applied in enumerating the naphthalene dioxygenase genes in a soil slurry microcosm. The results were in good agreement with contaminant mineralization and dot blot quantification of nahAc gene copies. Furthermore, the real-time PCR assay was found to be more sensitive than hybridization-based analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Altschul, SF, Madden, TL, Schaffer, AA, Zhang, J, Zhang, Z, Miller, W, Lipman, DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402

    Article  PubMed  CAS  Google Scholar 

  2. Baldwin, BR, Nakatsu, CH, Nies, L (2003) Detection and enumeration of aromatic oxygenase genes by multiplex and real-time PCR. Appl Environ Microbiol 69: 3350–3358

    Article  PubMed  CAS  Google Scholar 

  3. Beller, HR, Kane, SR, Legler, TC, Alvarez, PAA (2002) A real-time polymerase chain reaction method for monitoring anaerobic, hydrocarbon-degrading bacteria based on a catabolic gene. Environ Sci Technol 36: 3977–3984

    Article  PubMed  CAS  Google Scholar 

  4. Cerniglia, CE (1984) Microbial metabolism of polycyclic aromatic hydrocarbons. Adv Appl Microbiol 30: 31–71

    Article  PubMed  CAS  Google Scholar 

  5. Dionisi, HM, Chewning, CS, Morgan, KH, Menn, FM, Easter, JP, Sayler, GS (2004) Abundance of dioxygenase genes similar to Ralstonia sp. strain U2 nagAc is correlated with naphthalene concentrations in coal tar-contaminated freshwater sediments. Appl Environ Microbiol 70: 3988–3995

    Article  PubMed  CAS  Google Scholar 

  6. Ferrero, M, Llobet-Brossa, E, Lalucat, J, García-Valdés, E, Rosselló-Mora, R, Bosch, R (2002) Coexistence of two distinct copies of naphthalene degradation genes in Pseudomonas strains isolated from the western Mediterranean region. Appl Environ Microbiol 68: 957–962

    Article  PubMed  CAS  Google Scholar 

  7. Fuenmayor, SL, Wild, M, Boyes, AL, Williams, PA (1998) A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2. J Bacteriol 180: 2522–2530

    PubMed  CAS  Google Scholar 

  8. Futamata, H, Haryama, S, Watanabe, K (2001) Group-specific monitoring of phenol-hydroxylase genes for a functional assessment of phenol-simulated trichloroethylene bioremediation. Appl Environ Microbiol 67: 4671–4677

    Article  PubMed  CAS  Google Scholar 

  9. Goyal, AK, Zylstra, GJ (1997) Genetics of naphthalene and phenanthrene degradation by Comamonas testosteroni. J Ind Microbiol Biotech 19: 401–407

    Article  CAS  Google Scholar 

  10. Grüntzig, V, Nold, SC, Zhou, J, Tiedje, JM (2001) Pseudomonas stutzeri nitrite reductase gene abundance in environmental samples measured by real-time PCR. Appl Environ Microbiol 67: 760–768

    Article  PubMed  Google Scholar 

  11. Guo, C, Sun, W, Harsh, JB, Ogram, A (1997) Hybridization analysis of microbial DNA from fuel oil-contaminated and noncontaminated soil. Microb Ecol 34: 178–187

    Article  PubMed  CAS  Google Scholar 

  12. Habe, H, Omori, T (2003) Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67: 225–243

    Article  PubMed  CAS  Google Scholar 

  13. Henry, S, Baudoin, E, Lopez-Gutierrez, JC, Martin-Laurent, F, Brauman, A, Philippot L (2004) Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J Microbiol Methods 59: 327–335

    Article  PubMed  CAS  Google Scholar 

  14. Heuer, H, Wieland, G, Schönfeld, J, Schönwälder, A, Gomes, NCM, Smalla, K (2001) Bacterial community profiling using DGGE or TGGE analysis. In: Rochelle, PA (Ed.) Environmental Molecular Microbiology: Protocols and Applications. Horizon Scientific Press, UK, pp 177–190

    Google Scholar 

  15. Hosoda, A, Kasai, Y, Hamamura, N, Takahata, Y, Watanabe, K (2005) Development of a PCR method for the detection and quantification of benzoyl-CoA reductase genes and its application to monitored natural attenuation. Biodegradation 16: 591–601

    Article  PubMed  CAS  Google Scholar 

  16. Jukes, TH, Cantor, CR (1969) Evolution of protein molecules. In: Munro, HN (Ed.) Mammalian Protein Metabolism, vol. 3, Academic Press, New York, pp 21–132

    Google Scholar 

  17. Kaplan, CW, Kitts, CL (2004) Bacterial succession in a petroleum land treatment unit. Appl Environ Microbiol 70: 1777–1786

    Article  PubMed  CAS  Google Scholar 

  18. Karstensen, KH (1996) Nordic guideline for chemical analysis of contaminated soil samples. Nordtest, Espoo, NT Techn Report 329

  19. Katsivela, E, Moore, ERB, Kalogerakis, N (2004) Monitoring of the microbial activities and the diversity of the microbial community degrading refinery waste sludge. Water Air Soil Pollut Focus 4: 75–85

    Article  CAS  Google Scholar 

  20. Khan, AA, Wang, RF, Cao, WW, Doerge, DR, Wennerstrom, D, Cerniglia, CE (2001) Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 67: 3577–3585

    Article  PubMed  CAS  Google Scholar 

  21. Larkin, MJ, Allen, CC, Kulakov, LA, Lipscomb, DA (1999) Purification and characterization of a novel naphthalene dioxygenase from Rhodococcus sp. strain NCIMB12038. J Bacteriol 181: 6200–6204

    PubMed  CAS  Google Scholar 

  22. Laurie, AD, Llouyd-Jones, G (1999) The phn genes of Burkholderia sp. RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism. J Bacteriol 181: 531–540

    PubMed  CAS  Google Scholar 

  23. Ludwig, W, Strunk O, Westram, R, Richter, L, Meier, H, Yadhukumar, Buchner A, Lai T, Steppi, S, Jobb, G, Förster, W, Brettske, I, Gerber, S, Ginhart, AW, Gross, O, Grumann, S, Hermann, S, Jost, R, König, A, Liss, T, Lüßmann, R, May M, Nonhoff, B, Reichel, B, Strehlow, R, Stamatakis, A, Stuckmann, N, Vilbig, A, Lenke M, Ludwig, T, Bode, A, Schleifer, KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363–1371

    Article  PubMed  CAS  Google Scholar 

  24. Malinen, E, Kassinen, A, Rinttila, T, Palva, A (2003) Comparison of real-time PCR with SYBR Green I or 5′-nuclease assays and dot-blot hybridization with rDNA-targeted oligonucleotide probes in quantification of selected faecal bacteria. Microbiology 149: 269–277

    Article  PubMed  CAS  Google Scholar 

  25. Margesin, R, Labbe, D, Schinner, F, Greer, CW, Whyte, LG (2003) Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine Alpine soils. Appl Environ Microbiol 69: 3085–3092

    Article  PubMed  CAS  Google Scholar 

  26. Mesarch, MB, Nakatsu, CH, Nies, L (2004) Bench-scale and field-scale evaluation of catechol 2,3-dioxygenase specific primers for monitoring BTX bioremediation. Water Res 38: 1281–1288

    Article  PubMed  CAS  Google Scholar 

  27. Muyzer, G, de Waal, EC, Uitterlinden, AG (1993) Profiling complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59: 695–700

    PubMed  CAS  Google Scholar 

  28. Parales, RE (2003) The role of active site residues in naphthalene dioxygenase. J Ind Microbiol Biotech 30: 271–278

    Article  CAS  Google Scholar 

  29. Pinyakong, O, Habe, H, Omori, T (2003) The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). J Gen Appl Microbiol 49: 1–19

    Article  PubMed  CAS  Google Scholar 

  30. Piskonen, R, Nyyssönen, M, Rajamäki, T, Itävaara, M (2005) Monitoring of accelerated naphthalene-biodegradation in a bioaugmented soil slurry. Biodegradation 16: 127–134

    Article  PubMed  CAS  Google Scholar 

  31. Qiu, XY, Hurt, RA, Wu, LY, Chen, CH, Tiedje, JM, Zhou, JZ (2004) Detection and quantification of copper-denitrifying bacteria by quantitative competitive PCR. J Microbiol Methods 59: 199–210

    Article  PubMed  CAS  Google Scholar 

  32. Rasmussen, S (2001) Quantification on the LightCycler. In: Meuer, S, Wittwer, C, Nagakawara, K, (Eds.) Rapid Cycle Real-Time PCR, Methods and Applications. Springer Press, Heidelberg, pp 21–34

    Google Scholar 

  33. Rhee, SK, Liu, X, Wu, L, Chong, SC, Wan, X, Zhou, J (2004) Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Appl Environ Microbiol 70: 4303–4317

    Article  PubMed  CAS  Google Scholar 

  34. Ringelberg, DB, Talley, JW, Perkins, EJ, Tucker, SG, Luthy, RG, Bouwer, EJ, Fredrickson, HL (2001) Succession of phenotypic, genotypic, and metabolic community characteristics during in vitro bioslurry treatment of polycyclic aromatic hydrocarbon-contaminated sediments. Appl Environ Microbiol 67: 1542–1550

    Article  PubMed  CAS  Google Scholar 

  35. Sambrook, J, Russel, DW (2001) Molecular Cloning, A Laboratory Manual, Ed. 3. Cold Spring Harbor Press, Cold Spring Harbour, NY

    Google Scholar 

  36. Shen, Y, Stehmeier, LG, Voordouw, G (1998) Identification of hydrocarbon-degrading bacteria in soil by reverse sample genome probing. Appl Environ Microbiol 64: 637–645

    PubMed  CAS  Google Scholar 

  37. Stephen, JR, Chang, YJ, Gan, YD, Peacock, A, Peacock, SM, Pfiffner, SM, Barlecona, MJ, White, DC, Macnaughton, SJ (1999) Microbial characterization of a JP-4 fuel contaminated site using a combined lipid biomarker/PCR-DGGE based approach. Environ Microbiol 1: 231–241

    Article  PubMed  CAS  Google Scholar 

  38. Sun, Y, Polishchuk, EA, Radoja, U, Cullen, WR (2004) Identification and quantification of arsC genes in environmental samples by using real-time PCR. J Microbiol Methods 58: 335–349

    Article  PubMed  CAS  Google Scholar 

  39. Takizawa, N, Kaida, N, Torigoe, S, Moritani, T, Sawada, T, Satoh, S, Kiyohara, H (1994) Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82. J Bacteriol 176: 2444–2449

    PubMed  CAS  Google Scholar 

  40. Taylor, PM, Medd, JM, Schoenborn, L, Hodgson, B, Janssen, PH (2002) Detection of known and novel genes encoding aromatic ring-hydroxylating dioxygenases in soils and in aromatic hydrocarbon-degrading bacteria. FEMS Microbiol Lett 216: 61–66

    Article  PubMed  CAS  Google Scholar 

  41. Tuomi, M, Salminen, JM, Jorgensen, KS (2004) The abundance of nahAc genes correlates with the 14C-naphthalene mineralization potential in petroleum hydrocarbon-contaminated oxic soil layers. FEMS Microbiol Ecol 51: 99–107

    Article  PubMed  CAS  Google Scholar 

  42. Wang, G, Gentry, TJ, Grass, G, Josephson, K, Rensing, C, Pepper, IL (2004) Real-time PCR quantification of a green fluorescent protein-labelled, genetically engineered Pseudomonas putida strain during 2-chlorobenzoate degradation in soil. FEMS Microbiol Lett 233: 307–314

    Article  PubMed  CAS  Google Scholar 

  43. Watanabe, K, Futamata, H, Harayama, S (2002) Understanding the diversity in catabolic potential of microorganisms for the development of bioremediation strategies. Antonie Van Leeuwenhoek 81: 655–663

    Article  PubMed  CAS  Google Scholar 

  44. Whyte, LG, Bourbonnière, LG, Bellerose, CG, Greer, CW (1999) Bioremediation assessment of hydrocarbon-contaminated sediments from the high arctic. Bioremediat J 3: 69–80

    Article  CAS  Google Scholar 

  45. Widada, J, Noriji, H, Kasuga, K, Yoshida, T, Habe, H, Omori, T (2001) Quantification of the carbazole 1,9a-dioxygenase gene by real-time competitive PCR combined with co-extraction of internal standards. FEMS Microbiol Lett 202: 51–57

    Article  PubMed  CAS  Google Scholar 

  46. Wikstrom, P, Hagglund, L, Forsman, M (2000) Structure of a natural microbial community in a nitroaromatic contaminated groundwater is altered during biodegradation of extrinsic, but not intrinsic substrates. Microb Ecol 39: 203–210

    PubMed  CAS  Google Scholar 

  47. Witzthum, F, Geiger, G, Bisswanger, H, Brunner, H, Bernhagen, J (1999) A quantitative fluorescence-based microplate assay for the determination of double-stranded DNA using SYBR Green I and a standard ultraviolet transilluminator gel imaging system. Anal Biochem 276: 59–64

    Article  CAS  Google Scholar 

  48. Wilhelm, J, Pingoud, A (2003) Real-time polymerase chain reaction. ChemBioChem 4: 1120–1128

    Article  PubMed  CAS  Google Scholar 

  49. Wilson, IG (1997) Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 63: 3741–3751

    PubMed  CAS  Google Scholar 

  50. Wilson, MS, Bakermans, C, Madsen, EL (1999) In situ, real-time catabolic gene expression: extraction and characterization of naphthalene dioxygenase mRNA transcripts from groundwater. Appl Environ Microbiol 65: 80–87

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mari Nyyssönen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nyyssönen, M., Piskonen, R. & Itävaara, M. A Targeted Real-Time PCR Assay for Studying Naphthalene Degradation in the Environment. Microb Ecol 52, 533–543 (2006). https://doi.org/10.1007/s00248-006-9082-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9082-4

Keywords

Navigation