Skip to main content

Advertisement

Log in

Isolation of Pseudomonas aeruginosa from Open Ocean and Comparison with Freshwater, Clinical, and Animal Isolates

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa is an opportunistic pathogen responsible for morbidity and mortality in humans, animals, and plants. This bacterium has been regarded to be widely present in terrestrial and freshwater environments, but not in open ocean environments. Our purpose was to clarify its presence in open ocean, and their genotypic and physiological characteristics were compared with those of isolates from clinical, animal, and freshwater sources. Water samples were collected from freshwater, bays, and offshore environments in Japan. Sixty-two isolates, including 26 from the open ocean, were identified as P. aeruginosa by phenotypic characteristics and the BD Phoenix System. Pulsed-field gel electrophoresis (PFGE) was performed on all strains, together with 21 clinical and 8 animal strains. The results showed that open ocean strains are composed of a few genotypes, which are separated from other strains. Although some clinical isolates made a cluster, other strains tended to mix together. Different antibiotypes were observed among marine isolates that had similar PFGE and serotyping patterns. Some were multidrug-resistant. Laboratory-based microcosm study were carried out to see the responses of P. aeruginosa toward increased NaCl concentrations in deionized water (DW). Marine strains showed better survival with the increase, whereas river and clinical strains were suppressed by the increase. These findings illustrate the potential significance of open ocean as a possible reservoir of P. aeruginosa, and there may be clones unique to this environment. To our knowledge, this is the first report on the presence and characterization of P. aeruginosa in the open ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ahlen, C, Mandal, LH, Iversen, QJ (1998) Identification of infectious Pseudomonas aeruginosa strains in an occupational saturation diving environment. Occup Environ Med 55: 480–484

    Article  PubMed  CAS  Google Scholar 

  2. Ahlen, C, Mandal, LH, Johannessen, LN, Iversen, QJ (2000) Survival of infectious Pseudomonas aeruginosa genotypes in occupational saturation diving environment and the significance of these genotypes for recurrent skin infections. Am J Ind Med 37: 493–500

    Article  PubMed  CAS  Google Scholar 

  3. Alonso, A, Rojo, F, Martínez, JL (1999) Environmental and clinical isolates of Pseudomonas aeruginosa show pathogenic and biodegradative properties irrespective of their origin. Environ Microbiol 1: 421–430

    Article  PubMed  CAS  Google Scholar 

  4. Brisse, S, Stefani, S, Verhoef, J, Van Belkum, A, Vandamme, P, Goessens, W (2002) Comparative evaluation of the BD Phoenix and VITEK 2 automated instruments for identification of isolates of the Burkholderia cepacia complex. J Clin Microbiol 40: 1743–1748

    Article  PubMed  CAS  Google Scholar 

  5. Buysens, S, Heungens, K, Poppe, J, Hofte, M (1996) Involvement of pyochelin and pyoverdin in suppression of pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62: 865–871

    PubMed  CAS  Google Scholar 

  6. Denamur, E, Picard, B, Decoux, G, Denis, JB, Elion, J (1993) The absence of correlation between allozyme and rrn RFLP analysis indicates a high gene flow rate within human clinical Pseudomonas aeruginosa isolates. FEMS Microbiol Lett 110: 275–280

    Article  PubMed  CAS  Google Scholar 

  7. Diamond, SS, Ewing, DE, Cadwell, GA (1979) Fatal bronchopneumonia and dermatitis caused by Pseudomonas aeruginosa in an Atlantic bottle nosed dolphin. J Am Vet Med Assn 175: 984–987

    CAS  Google Scholar 

  8. Donay, JL, Mathieu, D, Fernandes, P, Prégermain, C, Bruel, P, Wargnier, A, Casin, I, Weill, FX, Lagrange, PH, Herrmann, JL (2004) Evaluation of the automated Phoenix system for potential routine use in the clinical microbiology laboratory. J Clin Microbiol 42: 1542–1546

    Article  PubMed  CAS  Google Scholar 

  9. Elaichouni, A, Vershraegen, A, Claeys, G, Devleeschouwer, M, Godard, C, Vaneechoute, M (1994) Pseudomonas aeruginosa serotype O12 outbreak studied by arbitrary primer PCR. J Clin Microbiol 32: 666–671

    PubMed  CAS  Google Scholar 

  10. Fahr, AM, Eigner, U, Armbrust, M, Caganic, A, Dettori, G, Chezzi, C, Bertoncini, L, Benecchi, M, Menozzi, MG (2003) Two-center collaborative evaluation of the performance of the BD Phoenix automated microbiology system for identification and antimicrobial susceptibility testing of Enterococcus spp. and Staphylococcus spp. J Clin Microbiol 41: 1135–1142

    Article  PubMed  Google Scholar 

  11. Finnan, S, Morrissey, JP, O'Gara, F, Boyd, EF (2004) Genome diversity of Pseudomonas aeruginosa isolates from cystic fibrosis patients and the hospital environment. J Clin Microbiol 42: 5783–5792

    Article  PubMed  CAS  Google Scholar 

  12. Foght, JM, Westlake, DWS, Johnson, WM, Ridgway, HF (1996) Environmental gasoline-utilizing isolates of Pseudomonas aeruginosa are taxonomically indistinguishable by chemotaxonomic and molecular techniques. Microbiology 142: 2333–2340

    PubMed  CAS  Google Scholar 

  13. Funke, G, Funke-Kissling, P (2004) Use of the BD PHOENIX automated microbiology system for direct identification and susceptibility testing of gram-negative rods from positive blood cultures in a three-phase trial. J Clin Microbiol 42: 1466–1470

    Article  PubMed  CAS  Google Scholar 

  14. Glazebrook, JS, Campbell, RS, Hutchinson, GW, Stallman, ND (1978) Rodent zoonoses in North Queensland: the occurrence and distribution of zoonotic infections in North Queensland rodents. Aust J Exp Biol Med Sci 56: 147–156

    PubMed  CAS  Google Scholar 

  15. Green, SK, Schroth, MN, Cho, JJ, Kominos SK, Vitanza-Jack, VB (1974) Agricultural plants and soil as a reservoir for Pseudomonas aeruginosa. Appl Microbiol 28: 987–991

    PubMed  CAS  Google Scholar 

  16. Grothues, D, Koopmann, U, von der Hardt, H, Tümmler, B (1988) Genome fingerprinting of Pseudomonas aeruginosa indicates colonization of cystic fibrosis siblings with closely related strains. J Clin Microbiol 26: 1973–1977

    PubMed  CAS  Google Scholar 

  17. Grundmann, H, Schneider, C, Hartung, D, Daschner, FD, Pitt, TL (1995) Discriminatory power of three DNA-based typing techniques for Pseudomonas aeruginosa. J Clin Microbiol 33: 528–534

    PubMed  CAS  Google Scholar 

  18. Hancock, REW, Poole, K, Benz, R (1982) Outer membrane protein P of Pseudomonas aeruginosa: regulation by phosphate deficiency and formation of small anion-specific channels in lipid bilayer membranes. J Bacteriol 150: 730–738

    PubMed  CAS  Google Scholar 

  19. Hase, CC, Fedorova, ND, Galperin, MY, Dibrov, PA (2001) Sodium ion cycle in bacterial pathogens: evidence from cross-genome comparisons. Microbiol Mol Biol Rev 65: 353–370

    Article  PubMed  CAS  Google Scholar 

  20. Head, NE, Yu, H (2004) Cross-sectional analysis of clinical and environmental isolates of Pseudomonas aeruginosa: biofilm formation, virulence, and genome diversity. Infect Immun 72: 133–144

    Article  PubMed  CAS  Google Scholar 

  21. Hoadley, AW (1968) On the significance of Pseudomonas aeruginosa in surface waters. J N Engl Water Works Assoc 82: 99–111

    Google Scholar 

  22. Hoadley, AW (1977) Potential health hazards associated with Pseudomonas aeruginosa in water. Am Soc Test Mater Spec Tech Publ 635: 80–114

    Google Scholar 

  23. Homma, JY (1982) Designation of the thirteen O-group antigens of Pseudomonas aeruginosa; an amendment for the tentative proposal in 1976. Japan J Exp Med 52: 317

    CAS  Google Scholar 

  24. Ishii, Y, Alba, J, Kimura, S, Nakashima, K, Abe, Y,Yamaguchi, K (2002) Rapid pulsed-field gel electrophoresis technique for determination of genetic diversity of Serratia marcescens. J Infect Chemother 8: 368–370

    Article  PubMed  CAS  Google Scholar 

  25. Karlowsky, JA, Deborah, CD, Mark, EJ, Thornsberry, C, Friedland, IR, Sahm, DF (2003) Surveillance for antimicrobial susceptibility among clinical isolates of Pseudomonas aeruginosa and Acinetobacter baumannii from hospitalized patients in the United States, 1998 to 2001. Antimicrob Agents Chemother 47: 1681–1688

    Article  PubMed  CAS  Google Scholar 

  26. Kato, C, Li, L, Tamaoka, J, Horikoshi, K (1997) Molecular analyses of the sediment of the 11,000-m deep Mariana Trench. Extremophiles 1: 117–123

    Article  PubMed  CAS  Google Scholar 

  27. Khan, AA, Cerniglia, CE (1994) Detection of Pseudomonas aeruginosa from clinical and environmental samples by amplification of the exotoxin A gene using PCR. Appl Environ Microbiol 10: 3739–3745

    Google Scholar 

  28. Kimata, N, Nishino, T, Suzuki, S, Kogure, K (2004) Pseudomonas aeruginosa isolated from marine environments in Tokyo Bay. Microb Ecol 47: 41–47

    Article  PubMed  CAS  Google Scholar 

  29. Kodaka, H, Iwata, M, Yumoto, S, Kashitani, F (2003) Evaluation of a new agar medium containing cetrimide, kanamycin and nalidixic acid for isolation and enhancement of pigment production of Pseudomonas aeruginosa in clinical samples. J Basic Microbiol 43: 407–413

    Article  PubMed  CAS  Google Scholar 

  30. Li, L, Kato, C, Nogi, Y, Horikoshi, K (1998) Distribution of the pressure-regulated operons in deep-sea bacteria. FEMS Microbiol Lett 159: 159–166

    Article  PubMed  CAS  Google Scholar 

  31. Lilly, HA, Lowbury, EJL (1972) Cetrimide-nalidixic acid agar as a selective medium for Pseudomonas aeruginosa. J Med Microbiol 5: 151–153

    Article  PubMed  CAS  Google Scholar 

  32. Martin-Kearley, J, Gow, JA, Peloquin M, Greer, CW (1994) Numerical analyses and the application of random amplified polymorphic DNA polymerase chain reaction to the differentiation of Vibrio strains from a seasonally cold ocean. Can J Microbiol 40: 445–446

    Google Scholar 

  33. Mates, A (1992) The significance of testing for Pseudomonas aeruginosa in recreational seawater beaches. Microbios 71: 89–93

    PubMed  CAS  Google Scholar 

  34. National Committee for Clinical Laboratory Standards (NCCLS) (1997) Methods for dilution in antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7-A4. National Committee for Clinical Laboratory Standards, Wayne, PA

    Google Scholar 

  35. National Committee for Clinical Laboratory Standards (NCCLS) (1999) Performance standards for antimicrobial susceptibility testing. Ninth informational supplement M100-S9. National Committee for Clinical Laboratory Standards, Wayne, PA

    Google Scholar 

  36. Panagea, S, Winstanley, C, Walshaw, MJ, Ledson, MJ, Hart, CA (2004) Environmental contamination with an epidemic strain of Pseudomonas aeruginosa in a Liverpool cystic fibrosis centre, and study of its survival on dry surfaces. J Hosp Infect 59: 102–107

    Article  Google Scholar 

  37. Papapetropourou, M, Rodopoulou, G (1994) Occurrence of enteric and non-enteric indicators in coastal waters of southern Greece. Bull Mar Sci 54: 63–70

    Google Scholar 

  38. Pellett, S, Bigley, DV, Grimes, DJ (1983) Distribution of Pseudomonas aeruginosa in a riverine ecosystem. Appl Environ Microb 45: 328–332

    CAS  Google Scholar 

  39. Pirnay, J-P, Matthijs, S, Colak, H, Chablain, P, Bilocq, F, Eldere, V, Vos, DD, Zizi, M, Triest, L, Cornelis, P (2005) Global Pseudomonas aeruginosa biodiversity as reflected in a Belgian river. Environ Microbiol 7: 969–980

    Article  PubMed  CAS  Google Scholar 

  40. Poirel, L, Lebessi, E, Castro, M, Fèvre, C, Foustoukou, M, Nordmann, P (2004) Nosocomial outbreak of extended-spectrum β-lactamase SHV-5-producing isolates of Pseudomonas aeruginosa in Athens, Greece. Antimicrob Agents Chemother 48: 2277–2279

    Article  PubMed  CAS  Google Scholar 

  41. Prevatt, AR, Sedwick, JD, Gajewski, BJ, Antonelli, PJ (2004) Hearing loss with semicircular canal transection and Pseudomonas aeruginosa otitis media. Otolaryngol Head Neck Surg 131: 248–252

    Article  PubMed  Google Scholar 

  42. Römling, U, Wingender, J, Müller, H, Tümmler, B (1994) A major Pseudomonas aeruginosa clone common to patients and aquatic habitats. Appl Environ Microbiol 60: 1734–1738

    PubMed  Google Scholar 

  43. Ruimy, R, Genauzeau, E, Barnabe, C, Beaulieu, A, Tibayrenc, M, Andremont, A (2001) Genetic diversity of Pseudomonas aeruginosa strains isolated from ventilated patients with nosocomial pneumonia, cancer patients with bacteremia, and environmental water. Infect Immun 69: 584–588

    Article  PubMed  CAS  Google Scholar 

  44. Schroeter, J (1872) Ueber einige durch Bacterien gebildete Pigmente. In: Cohn, FJU (Eds.) Beigrage zur Biologie der Pflanzen. Ern's Verlag, Breslau, pp 109–126

    Google Scholar 

  45. Sokal, RR, Sneath, PHA (1963) Principles of numerical taxonomy. Freeman, San Francisco, CA

    Google Scholar 

  46. Spilker, T, Coenye, T, Vandamme, P, LiPuma, JJ (2004) PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J Clin Microbiol 42: 2074–2079

    Article  PubMed  CAS  Google Scholar 

  47. Stover, CK, Pham, XQ, Erwin, AL, Mizoguchi, SD, Warrener, P, Hickey, MJ, Brinkman, FSL, Hufnagle, WO, Kowalik, DJ, Lagrou, M, Garber, RL, Goltry, L, Tolentino, E, Westbrock-Wadman, S, Yuan, Y, Brody, LL, Coulter, SN, Folger, KR, Kas, A, Larbig, K, Lim, R, Smith, K, Spencer, D, Wong, GK-S, Wu, Z, Paulsen, IT, Reizer, J, Saier, MH, Hancock, REW, Lory, S, Olson, MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406: 959–964

    Article  PubMed  CAS  Google Scholar 

  48. Suzuki, S, Kogure, K, Tanoue, E (1997) Immunochemical detection of dissolved proteins and their source bacteria in marine environments. Mar Ecol Prog Ser 158: 1–9

    CAS  Google Scholar 

  49. Szoboszlay, S, Atzel, B, Kriszt, B (2003) Comparative biodegradation examination of Pseudomonas aeruginosa (ATCC 27853) and other oil degraders on hydrocarbon contaminated soil. Commun Agric Appl Biol Sci 68: 207–210

    PubMed  CAS  Google Scholar 

  50. Tanoue, E, Nishiyama, S, Kamo, M, Tsugita, A (1995) Bacterial membranes: possible source of a major dissolved protein in seawater. Geochim Cosmochim Acta 59: 2643–2648

    Article  CAS  Google Scholar 

  51. Tanoue, E (1995) Detection of dissolved protein molecules in oceanic waters. Mar Chem 51: 239–252

    Article  CAS  Google Scholar 

  52. Tanoue, E, Ishii, M, Midorikawa, T (1996) Discrete dissolved and particulate proteins in oceanic waters. Limnol Oceanogr 41: 1334–1343

    Article  CAS  Google Scholar 

  53. Tenover, FC, Arbeit, RD, Goering, RV, Micklesen, PA, Murray, BE, Persing, DH, Swaminathan, B (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33: 2233–2239

    PubMed  CAS  Google Scholar 

  54. Velammal, A, Aiyamperumal, B, Venugopalan, VK, Ajmalkhan, S (1994) Distribution of Pseudomonas aeruginosa in Pondicherry coastal environments. Ind J Mar Sci 23: 239–241

    Google Scholar 

  55. Vonder Haar, TH, Oort, AH (1973) New estimate of annual poleward energy transport by northern hemisphere oceans. J Phys Oceanogr 3: 169–172

    Article  Google Scholar 

  56. Walker, TS, Bais, HP, Deziel, E, Schweizer, HP, Rahme, LG, Fall, R, Vivanco, JM (2004) Pseudomonas aeruginosa–plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol 34: 320–331

    Article  CAS  Google Scholar 

  57. White, WB, McCreary, JP (1976) On the formation of the Kuroshio meander and its relationship to the large scale ocean circulation. Deep-Sea Res 23: 33–47

    Google Scholar 

  58. Williams, PA, Worsey, MJ (1976) Ubiquity of plasmids in coding for toluene and xylene metabolism in soil bacteria: evidence for the existence of new TOL plasmids. J Bacteriol 125: 818–828

    PubMed  CAS  Google Scholar 

  59. Yeruham, I, Elad, D, Avidar, Y, Goshen, T, Asis, E (2004) Four-year survey of urinary tract infections in calves in Israel. Vet Rec 154: 204–206

    PubMed  CAS  Google Scholar 

  60. Yoshpe-Purer, Y, Golderman, S (1987) Occurrence of Staphylococcus aureus and Pseudomonas aeruginosa in Israeli coastal water. Appl Environ Microbiol 53: 1138–1141

    PubMed  CAS  Google Scholar 

  61. Young, AL, Leung, AT, Cheng, LL, Law, RW, Wong, AK, Lam, DS (2004) Orthokeratology lens-related corneal ulcers in children: a case series. Ophthalmology 111(3): 590–595

    Article  PubMed  Google Scholar 

  62. Zhang, Y, Yakrus, MA, Graviss, EA, Williams-Bouyer, N, Turenne, C, Kabani, A, Wallace, RJ Jr (2004) Pulsed-field gel electrophoresis study of Mycobacterium abscessus isolates previously affected by DNA degradation. J Clin Microbiol 42: 5582–5587

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by Grants-in-Aid for Creative Basic Research #12NP0201 (DOBIS), and #14208063 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. We are grateful to Nihon Becton Dickinson Co., Ltd., Japan, for providing many Phoenix panels for the analyses. Our special thanks go to Dr. Kumiko-Kita Tsukamoto and Ms. Katomi Yao (Ocean Research Institute, The University of Tokyo) for doing 16S rDNA analyses of randomly selected isolates. We are also thankful to Ms. Reiko Shimatsu (Toho University School of Medicine) for her assistance during the BD Phoenix analyses. We remain indebted to Dr. Minoru Wada (Ocean Research Institute, Tokyo University) for his valuable advice during the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurul Huda Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, N.H., Ishii, Y., Kimata-Kino, N. et al. Isolation of Pseudomonas aeruginosa from Open Ocean and Comparison with Freshwater, Clinical, and Animal Isolates. Microb Ecol 53, 173–186 (2007). https://doi.org/10.1007/s00248-006-9059-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9059-3

Keywords

Navigation