Skip to main content
Log in

Nitrification in Freshwater Sediments as Influenced by Insect Larvae: Quantification by Microsensors and Fluorescence in Situ Hybridization

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Sediment-reworking macrofauna can stimulate nitrification by increasing the O2 penetration into sediments or it can reduce nitrification by grazing on nitrifying bacteria. We investigated the influence of Chironomus riparius larvae (Insecta: Diptera) on the in situ activity, abundance, and distribution of NH +4 -oxidizing (AOB) and NO 2 -oxidizing bacteria (NOB) in two freshwater sediments with microsensors and fluorescence in situ hybridization. In organic-poor sediment, nitrification activity was reduced by the presence of C. riparius larvae, whereas no such effect was detected in organic-rich sediment. We explain this difference with the variable larval burrowing and grazing behavior in the two sediment types: In organic-poor sediment larval activities were intense and evenly distributed across the whole sediment surface, whereas in organic-rich sediment larval activities were locally restricted to the microenvironment of animal burrows. Surprisingly, the animals did not cause any significant change of the abundance of AOB and NOB. This implies that the observed reduction of nitrification activity was not density-regulated, but rather was due to the lowered metabolic activity of the nitrifiers. Partial digestion and redeposition of particle-associated bacteria by C. riparius larvae are believed to have caused this loss of metabolic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. D Altmann P Stief R Amann D de Beer A Schramm (2003) ArticleTitleIn situ distribution and activity of nitrifying bacteria in freshwater sediment. Environ Microbiol 5 798–803 Occurrence Handle10.1046/j.1469-2920.2003.00469.x Occurrence Handle1:CAS:528:DC%2BD3sXnslehtrw%3D Occurrence Handle12919415

    Article  CAS  PubMed  Google Scholar 

  2. D Archer A Devol (1992) ArticleTitleBenthic oxygen fluxes on the Washington Shelf and Slope: a comparison of in situ microelectrode and chamber flux measurements. Limnol Oceanogr 37 614–629 Occurrence Handle1:CAS:528:DyaK38XlvFOqs7w%3D

    CAS  Google Scholar 

  3. M Bartoli D Nizzoli DT Welsh P Viaroli (2000) ArticleTitleShort-term influence of recolonisation by the polycheate worm Nereis succinea on oxygen and nitrogen fluxes and denitrification: a microcosm simulation. Hydrobiologia 431 165–174 Occurrence Handle10.1023/A:1004088112342 Occurrence Handle1:CAS:528:DC%2BD3cXnslSgsbY%3D

    Article  CAS  Google Scholar 

  4. H Daims JL Nielsen PH Nielsen KH Schleifer M Wagner (2001) ArticleTitleIn situ characterization of Nitrospira-like nitrite oxidizing bacteria active in wastewater treatment plants. Appl Environ Microbiol 67 5273–5284 Occurrence Handle10.1128/AEM.67.11.5273-5284.2001 Occurrence Handle1:CAS:528:DC%2BD3MXotlSnsLo%3D Occurrence Handle11679356

    Article  CAS  PubMed  Google Scholar 

  5. D de Beer P Stoodley (1999) Microbial Biofilms. M Dworkin (Eds) The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community Springer-Verlag New York:

    Google Scholar 

  6. D de Beer JPRA Sweerts (1989) ArticleTitleMeasurement of nitrate gradients with an ion-selective microelectrode. Anal Chim Acta 219 351–356

    Google Scholar 

  7. D de Beer JC van den Heuvel (1988) ArticleTitleResponse of ammonium-selective microelectrodes based on the neutral carrier nonactin. Talanta 35 728–730 Occurrence Handle10.1016/0039-9140(88)80171-1 Occurrence Handle1:CAS:528:DyaL1MXoslGgsg%3D%3D

    Article  CAS  Google Scholar 

  8. EF DeLong GS Wickham N Pace (1989) ArticleTitlePhylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243 1360–1363 Occurrence Handle1:CAS:528:DyaL1MXhs12ms7k%3D Occurrence Handle2466341

    CAS  PubMed  Google Scholar 

  9. A Gieseke U Purkhold M Wagner R Amann A Schramm (2001) ArticleTitleCommunity structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Appl Environ Microbiol 67 1351–1362 Occurrence Handle10.1128/AEM.67.3.1351-1362.2001 Occurrence Handle1:CAS:528:DC%2BD3MXhslSjtr0%3D Occurrence Handle11229931

    Article  CAS  PubMed  Google Scholar 

  10. W Goedkoop KR Gullberg RK Johnson I Ahlgren (1997) ArticleTitleMicrobial response of freshwater benthic community to a simulated diatom sedimentation event: Interactive effects of benthic fauna. Microb Ecol 34 131–143 Occurrence Handle10.1007/s002489900043 Occurrence Handle9230101

    Article  PubMed  Google Scholar 

  11. RA Herbert (1999) ArticleTitleNitrogen cycling in coastal marine ecosystems. FEMS Microbiol Rev 23 563–590 Occurrence Handle10.1016/S0168-6445(99)00022-4 Occurrence Handle1:CAS:528:DyaK1MXmsFartLk%3D Occurrence Handle10525167

    Article  CAS  PubMed  Google Scholar 

  12. RK Johnson B Boström W van de Bund (1989) ArticleTitleInteractions between Chironomus plumosus (L.) and the microbial community in surficial sediments of a shallow, eutrophic lake. Limnol Oceanogr 34 992–1003

    Google Scholar 

  13. E Kristensen MH Jensen TK Andersen (1985) ArticleTitleThe impact of polychaete (Nereis virens Sars) burrows on nitrification and nitrate reduction in estuarine sediments. J Exp Mar Biol Ecol 85 75–91 Occurrence Handle10.1016/0022-0981(85)90015-2 Occurrence Handle1:CAS:528:DyaL2MXhvFSmsbw%3D

    Article  CAS  Google Scholar 

  14. E Llobet-Brossa R Rossello-Mora R Amann (1998) ArticleTitleMicrobial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Appl Environ Microbiol 64 2691–2696 Occurrence Handle9647850

    PubMed  Google Scholar 

  15. W Manz R Amann W Ludwig M Wagner K-H Schleifer (1992) ArticleTitlePhylogenetic oligodeoxynucleotide probes for the major subclass of proteobacteria: problems and solutions. Syst Appl Microbiol 15 593–600

    Google Scholar 

  16. G Matisoff JB Fisher S Matis (1985) ArticleTitleEffects of benthic macroinvertebrates on the exchange of solutes between sediments and freshwater. Hydrobiologia 122 19–33 Occurrence Handle10.1007/BF00018956 Occurrence Handle1:CAS:528:DyaL2MXkt1Krsbo%3D

    Article  CAS  Google Scholar 

  17. MS Mayer L Schaffner WM Kemp (1995) ArticleTitleNitrification potentials of benthic macrofaunal tubes and burrow walls: effects of sediment NH +4 and animal irrigation behavior. Mar Ecol Prog Ser 121 157–169 Occurrence Handle1:CAS:528:DyaK2MXnsFKnu7s%3D

    CAS  Google Scholar 

  18. BK Mobarry M Wagner V Urbain BE Rittmann DA Stahl (1996) ArticleTitlePhylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl Environ Microbiol 62 2156–2162

    Google Scholar 

  19. E Morgenroth A Obermayer E Arnold A Brühl M Wagner PA Wilderer (2000) ArticleTitleEffect of long-term idle periods on the performance of sequencing batch reactors. Wat Sci Technol 41 105–113 Occurrence Handle1:CAS:528:DC%2BD3cXhsF2ku7Y%3D

    CAS  Google Scholar 

  20. DB Oerther J Pernthaler A Schramm R Amann L Raskin (2000) ArticleTitleMonitoring precursor 16S rRNAs of Acinetobacter spp. in activated sludge wastewater treatment systems. Appl Environ Microbiol 66 2154–2165 Occurrence Handle10.1128/AEM.66.5.2154-2165.2000 Occurrence Handle1:CAS:528:DC%2BD3cXjtV2lu7Y%3D Occurrence Handle10788395

    Article  CAS  PubMed  Google Scholar 

  21. SP Pelegri TH Blackburn (1994) ArticleTitleBioturbation effects of the amphipod Corophium volutator on microbial nitrogen transformations in marine sediments. Mar Biol 121 253–258 Occurrence Handle10.1007/BF00346733

    Article  Google Scholar 

  22. SP Pelegri TH Blackburn (1996) ArticleTitleNitrogen cycling in lake sediments bioturbated by Chironomus plumosus larvae, under different degrees of oxygenation. Hydrobiologia 325 231–238 Occurrence Handle1:CAS:528:DyaK28Xltl2jtLk%3D

    CAS  Google Scholar 

  23. A Pernthaler J Pernthaler M Schattenhofer R Amann (2002) ArticleTitleIdentification of DNA-synthesizing bacterial cells in coastal North Sea plankton. Appl Environ Microbiol 68 5728–5736

    Google Scholar 

  24. J Pernthaler FO Glöckner S Unterholzner A Alfreider R Psenner R Amann (1998) ArticleTitleSeasonal community and population dynamics of pelagic bacteria and archaea in a high mountain lake. Appl Environ Microbiol 64 4299–4306 Occurrence Handle1:CAS:528:DyaK1cXnt1aisr8%3D Occurrence Handle9797280

    CAS  PubMed  Google Scholar 

  25. CJ Plante (2000) ArticleTitleRole of bacterial exopolymeric capsules in protection from deposit-feeder digestion. Aquat Microb Ecol 21 211–219

    Google Scholar 

  26. JI Prosser (1989) Autotrophic nitrification in bacteria, AH Rose DW Tempest (Eds) Advances in Microbial Physiology, vol. 30 Academic Press New York 125–181

    Google Scholar 

  27. NP Revsbech (1989) ArticleTitleAn oxygen microsensor with a guard cathode. Limnol Oceanogr 34 474–478 Occurrence Handle1:CAS:528:DyaL1MXkvVeksbc%3D

    CAS  Google Scholar 

  28. MA Rouf MM Rigney (1993) ArticleTitleBacterial florae in larvae of the lake fly Chironomus plumosus. Appl Environ Microbiol 59 1236–1241

    Google Scholar 

  29. S Sakita T Kusuda (2000) ArticleTitleModeling and simulation with microsites on vertical concentration profiles in sediments of aquatic zones. Wat Sci Technol 42 409–415 Occurrence Handle1:CAS:528:DC%2BD3cXotFWmsb0%3D

    CAS  Google Scholar 

  30. M Schmid S Schmitz-Esser M Jetten M Wagner (2001) ArticleTitle16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: implications for phylogeny and in situ detection. Environ Microbiol 3 450–459 Occurrence Handle10.1046/j.1462-2920.2001.00211.x Occurrence Handle1:CAS:528:DC%2BD3MXntVOjs7o%3D Occurrence Handle11553235

    Article  CAS  PubMed  Google Scholar 

  31. A Schramm D de Beer A Gieseke R Amann (2000) ArticleTitleMicroenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm. Environ Microbiol 2 680–686 Occurrence Handle10.1046/j.1462-2920.2000.00150.x Occurrence Handle1:STN:280:DC%2BD3M7otVWksg%3D%3D Occurrence Handle11214800

    Article  CAS  PubMed  Google Scholar 

  32. A Schramm LH Larsen NP Revsbech R Amann (1997) ArticleTitleStructure and function of nitrifying biofilm as determined by microelectrodes and fluorescent oligonucleotide probes. Wat Sci Technol 36 263–270 Occurrence Handle10.1016/S0273-1223(97)00333-8 Occurrence Handle1:CAS:528:DyaK2sXmslCjs7c%3D

    Article  CAS  Google Scholar 

  33. P Stief D de Beer (2002) ArticleTitleBioturbation effects of Chironomus riparius on the benthic N-cycle as measured using microsensors and microbiological assays. Aquat Microb Ecol 27 175–185

    Google Scholar 

  34. P Stief D de Beer D Neumann (2002) ArticleTitleSmall-scale distribution of interstitial nitrite in freshwater sediment microcosms: the role of nitrate and oxygen availability and sediment permeability. Microb Ecol 43 367–378 Occurrence Handle10.1007/s00248-002-2008-x Occurrence Handle1:CAS:528:DC%2BD38XkvFSnsrg%3D Occurrence Handle12037614

    Article  CAS  PubMed  Google Scholar 

  35. JM Svensson (1998) ArticleTitleEmission of N2O, nitrification and denitrification in a eutrophic lake sediment bioturbated by Chironomus plumosus. Aquat Microb Ecol 14 289–299

    Google Scholar 

  36. JM Svensson (1997) ArticleTitleInfluence of Chironomus plumosus larvae on ammonium flux and denitrification (measured by the acetylene blockage- and the isotope pairing-technique) in eutrophic lake sediment. Hydrobiologia 346 157–168 Occurrence Handle10.1023/A:1002974201570 Occurrence Handle1:CAS:528:DyaK2sXmtVChtr4%3D

    Article  CAS  Google Scholar 

  37. W van de Bund W Goedkoop RK Johnson (1994) ArticleTitleEffects of deposit feeder activity on bacterial production and abundance in profundal lake sediment. J N Am Benthol Soc 13 532–539

    Google Scholar 

  38. M Wagner G Rath HP Koops J Flood R Amann (1996) ArticleTitleIn situ analysis of nitrifying bacteria in sewage treatment plants. Wat Sci Technol 34 237–244 Occurrence Handle10.1016/0273-1223(96)00514-8 Occurrence Handle1:CAS:528:DyaK28XmsVyisLc%3D

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Enrique Llobet-Brossa and Armin Gieseke for their advice and helpful comments regarding FISH in sediments. Gabi Eickert, Anja Eggers, and Ines Schröder are acknowledged for the construction of O2 microelectrodes. For critical comments on the paper we thank Rebecca Ludwig and Armin Gieseke. For statistical advice we are grateful to Werner Wosniok (University of Bremen). Financial support was provided by the German Research Foundation (STI202/1-2), and by the Max Planck Society, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Stief.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altmann, D., Stief, P., Amann, R. et al. Nitrification in Freshwater Sediments as Influenced by Insect Larvae: Quantification by Microsensors and Fluorescence in Situ Hybridization. Microb Ecol 48, 145–153 (2004). https://doi.org/10.1007/s00248-003-2015-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-003-2015-6

Keywords

Navigation