Skip to main content
Log in

Nitrification and denitrification in estuarine sediments with tube-dwelling benthic animals

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Burrowing benthic animals belonging to the same functional group may produce species-specific effects on microbially mediated nitrogen (N) processes depending upon different ecological traits. We investigated the effects of two tube-dwelling organisms, amphipods (Corophium insidiosum) and chironomid larvae (Chironomus plumosus), on benthic N cycling in bioturbated estuarine sediments. Aims of this work were to analyze the interactions among burrowers and N-related microbial processes in two distinct sedimentary environments colonized by benthic animals with different ecological traits. We hypothesized higher rates of nitrification and higher coupled nitrification–denitrification in sediments with C. insidiosum due to continuous ventilation rates. We expected higher denitrification of water column nitrate in sediments with C. plumosus due to lower and intermittent ventilation activity and lower oxygen levels in burrows. To this purpose, we combined process–specific (nitrification and denitrification) with net N flux measurements in intact and reconstructed sediments. Sediments with C. insidiosum had higher rates of oxygen demand and of potential nitrification and higher concentration of pore water NH4+ as compared to sediments with C. plumosus. Sediments with both species displayed comparable net N2 fluxes, mostly sustained by respiration of water column NO3 in sediments with chironomid larvae and by NO3 produced within sediments in sediments with corophiid amphipods. Corophium insidiosum stimulated nitrification nearly 15-fold more as compared to C. plumosus. Overall, our results demonstrate that sediments with burrowing fauna may display similar rates of denitrification, but underlying mechanisms may deeply vary and be species-specific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bartoli, M., D. Nizzoli, D. T. Welsh & P. Viaroli, 2000. Short-term influence of recolonisation by the polychaete worm Nereis succinea on oxygen and nitrogen fluxes and denitrification: a microcosm simulation. Hydrobiologia 431: 165–174.

    Article  CAS  Google Scholar 

  • Bartoli, M., G. Castaldelli, D. Nizzoli & P. Viaroli, 2012. Benthic primary production and bacterial denitrification in a Mediterranean eutrophic coastal lagoon. Journal of Experimental Marine Biology and Ecology 438: 41–51.

    Article  CAS  Google Scholar 

  • Belser, L. W. & E. L. Mays, 1980. Specific inhibition of nitrite oxidation by chlorate and its use in assessing nitrification in soils and sediments. Applied Environmental Microbiology 39: 505–510.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bower, C. E. & T. Holm-Hansen, 1980. A salicylate-hypochlorite method for determining ammonia in seawater. Canadian Journal of Fish and Aquatic Science 37: 794–798.

    Article  CAS  Google Scholar 

  • Brand, A., J. Lewandowski, E. Hamann & G. Nützmann, 2013. Advection around ventilated U-shaped burrows: a model study. Water Resources Research 49: 2907–2917.

    Article  Google Scholar 

  • Brin, L. D., A. E. Giblin & J. J. Rich, 2014. Environmental controls of anammox and denitrification in southern New England estuarine and shelf sediments. Limnology and Oceanography 59: 851–860.

    Article  CAS  Google Scholar 

  • Burgin, A. J. & S. K. Hamilton, 2007. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Frontiers in Ecology and the Environment 5: 89–96.

    Article  Google Scholar 

  • Cornwell, J. C., W. M. Kemp & T. M. Kana, 1999. Denitrification in coastal ecosystems: methods, environmental controls, and ecosystem level controls, a review. Aquatic Ecology 33: 41–55.

    Article  CAS  Google Scholar 

  • Dalsgaard, T., L.P. Nielsen, V. Brotas & et al., 2000. Protocol handbook for NICE-nitrogen cycling in estuaries: a project under the EU research programme. In: Marine Science and Technology (MAST III), National Environmental Research Institute, Silkeborg.

  • Dollhopf, S. L., J. H. Hyun, A. C. Smith, H. J. Adams, S. O’Brien & J. E. Kostka, 2005. Quantification of ammonium-oxidizing bacteria and factors controlling nitrification in salt marsh sediments. Applied Environmental Microbiology 71: 240–246.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eyre, B. D. & A. J. P. Ferguson, 2009. Denitrification efficiency for defining critical loads of carbon in shallow coastal ecosystems. Hydrobiologia 629: 137–146.

    Article  CAS  Google Scholar 

  • Fulweiler, R. W., E. M. Heiss, M. K. Rogener, M. K. Rogener, S. E. Newell, G. R. LeCleir, S. M. Kortebein & S. W. Wilhelm, 2015. Examining the impact of acetylene on N-fixation and the active sediment microbial community. Frontiers in Microbiology 6: 418.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gamble, J. C., 1970. Anaerobic survival of the crustaceans Corophium volutator, C. arenarium and Tanais chevreuxi. Journal of the Marine Biological Association of the United Kingdom 50: 657–671.

    Article  Google Scholar 

  • Gasiūnaitė, Z. R., D. Daunys, S. Olenin & A. Razinkovas, 2008. The Curonian lagoon. In Schiewer, U. (ed.), Ecology of Baltic coastal waters. Springer, Berlin: 197–215.

    Chapter  Google Scholar 

  • Grasshoff, K., M. Ehrhardt & K. Kremling, 1983. Methods of seawater analysis, 2nd ed. Berlin, Wiley.

    Google Scholar 

  • Gutiérrez, J. L. & C. G. Jones, 2006. Physical ecosystem engineers as agents of biogeochemical heterogeneity. Bioscience 56: 227–236.

    Article  Google Scholar 

  • Henriksen, K., J. I. Hansen & T. H. Blackburn, 1981. Rates of nitrification, distribution of nitrifying bacteria, and nitrate fluxes in different types of sediment from Danish waters. Marine Biology 61: 299–304.

    Article  CAS  Google Scholar 

  • Hölker, F., M. J. Vanni, J. J. Kuiper, et al., 2015. Tube-dwelling invertebrates: tiny ecosystem engineers have large effects in lake ecosystems. Ecological Monographs 85: 333–351.

    Article  Google Scholar 

  • Kajan, R. & P. Frenzel, 1999. The effect of chironomid larvae on production, oxidation and fluxes of methane in a flooded rice soil. FEMS Microbiology Ecology 28: 121–129.

    Article  CAS  Google Scholar 

  • Kana, T. M., C. Darkangelo, D. Hunt, J. B. Oldham, G. E. Bennett & J. C. Cornwell, 1994. A membrane inlet mass spectrometer for rapid high-precision determination of N2, O2, and Ar in environmental water samples. Analytical Chemistry 66: 4166–4170.

    Article  CAS  Google Scholar 

  • Kristensen, E., 2000. Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426: 1–24.

    Article  CAS  Google Scholar 

  • Kristensen, E. & K. Hansen, 1999. Transport of carbon dioxide and ammonium in bioturbated (Nereis diversicolor) coastal, marine sediments. Biogeochemistry 45: 147–168.

    Google Scholar 

  • Kristensen, E., M. H. Jensen & R. C. Aller, 1991. Direct measurement of dissolved inorganic nitrogen exchange and denitrification in individual polychaete (Nereis virens) burrows. Journal of Marine Research 49: 355–377.

    Article  CAS  Google Scholar 

  • Kristensen, E., G. Penha-Lopes, M. Delefosse, T. Valdemarsen, C. O. Quintana & G. T. Banta, 2012. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Marine Ecology Progress Series 446: 285–302.

    Article  Google Scholar 

  • Lewandowski, J., C. Laskov & M. Hupfer, 2007. The relationship between Chironomus plumosus burrows and the spatial distribution of pore-water phosphate, iron and ammonium in lake sediments. Freshwater Biology 52: 331–343.

    Article  CAS  Google Scholar 

  • Mayer, M. S., L. Schaffner & W. M. Kemp, 1995. Nitrification potentials of benthic macrofaunal tubes and burrow walls: effects of sediment NH4 + and animal irrigation behaviour. Marine Ecology Progress Series 121: 157–169.

    Article  CAS  Google Scholar 

  • Mermillod-Blondin, F., R. Rosenberg, F. François-Carcaillet, K. Norling & L. Mauclaire, 2004. Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment. Aquatic Microbial Ecology 36: 271–284.

    Article  Google Scholar 

  • Møller, L. F. & H. U. Riisgård, 2006. Filter feeding in the burrowing amphipod Corophium volutator. Marine Ecology Progress Series 322: 213–224.

    Article  Google Scholar 

  • Murphy, A. E., D. Nizzoli, M. Bartoli, A. R. Smyth, G. Castaldelli & I. C. Anderson, 2018. Variation in benthic metabolism and nitrogen cycling across clam aquaculture sites. Marine Pollution Bulletin 127: 524–535.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, L. P., 1992. Denitrification in sediment determined from nitrogen isotope paring. FEMS Microbiology Ecology 86: 357–362.

    Article  CAS  Google Scholar 

  • Nizzoli, D., M. Bartoli, M. Cooper, D. T. Welsh, G. J. C. Underwood & P. Viaroli, 2007. Implications for oxygen, nutrient fluxes and denitrification rates during the early stage of sediment colonisation by the polychaete Nereis spp. in four estuaries. Estuarine, Coastal and Shelf Science 75: 125–134.

    Article  Google Scholar 

  • Pelegrí, S. P. & T. H. Blackburn, 1994. Bioturbation effects of the amphipod Corophium volutator on microbial nitrogen transformations in marine sediments. Marine Biology 121: 253–258.

    Article  Google Scholar 

  • Pelegrí, S. P. & T. H. Blackburn, 1995a. Effects of Tubifex tubifex (Oligochaeta: Tubificidae) on N-mineralization in freshwater sediments, measured with 15N isotopes. Aquatic Microbial Ecology 9: 289–294.

    Article  Google Scholar 

  • Pelegrí, S. P. & T. H. Blackburn, 1995b. Effect of bioturbation by Nereis sp., Mya arenaria and Cerastoderma sp. on nitrification and denitrification in estuarine sediments. Ophelia 42: 289–299.

    Article  Google Scholar 

  • Pelegrí, S. P. & T. H. Blackburn, 1996. Nitrogen cycling in lake sediments bioturbated by Chironomus plumosus larvae, under different degrees of oxygenation. Hydrobiologia 325: 231–238.

    Article  Google Scholar 

  • Riisgård, H. U., 2007. Biomechanics and energy cost of the amphipod Corophium volutator filter-pump. Biological Bulletin 212: 104–114.

    Article  PubMed  Google Scholar 

  • Roskosch, A., M. R. Morad, A. Khalili & J. Lewandowski, 2010. Bioirrigation by Chironomus plumosus: advective flow investigated by particle image velocimetry. Journal of North American Benthological Society 29: 789–802.

    Article  Google Scholar 

  • Rysgaard, S., N. Risgaard-Petersen, L. P. Nielsen & N. P. Revsbech, 1993. Nitrification and denitrification in lake and estuarine sediments measured by the 15N dilution technique and isotope pairing. Applied Environmental Microbiology 59: 2093–2098.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rysgaard, S., N. Risgaard-Petersen, N. P. Sloth, K. Jensen & L. P. Nielsen, 1994. Oxygen regulation of nitrification and denitrification in freshwater sediments. Limnology and Oceanography 39: 1643–1652.

    Article  CAS  Google Scholar 

  • Rysgaard, S., P. B. Christensen & L. P. Nielsen, 1995. Seasonal variation in nitrification and denitrification in estuarine sediment colonized by benthic microalgae and bioturbating infauna. Marine Ecology Progress Series 126: 111–121.

    Article  CAS  Google Scholar 

  • Sloth, N. P., L. P. Nielsen & T. H. Blackburn, 1992. Nitrification in sediment cores measured with acetylene inhibition. Limnology and Oceanography 37: 1108–1112.

    Article  CAS  Google Scholar 

  • Steingruber, S. M., J. Friedrich, R. Gächter & B. Wehrli, 2001. Measurement of denitrification in sediments with the 15N isotope pairing technique. Applied Environmental Microbiology 67: 3771–3778.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stief, P., 2013. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications. Biogeosciences 10: 7829–7846.

    Article  CAS  Google Scholar 

  • Stief, P. & D. de Beer, 2002. Bioturbation effects of Chironomus riparius on the benthic N-cycle as measured using microsensors and microbiological assays. Aquatic Microbial Ecology 27: 175–185.

    Article  Google Scholar 

  • Stief, P. & D. de Beer, 2006. Probing the microenvironment of freshwater sediment macrofauna: implications of deposit-feeding and bioirrigation for nitrogen cycling. Limnology and Oceanography 51: 2538–2548.

    Article  Google Scholar 

  • Stief, P., M. Poulsen, L. P. Nielsen, H. Brix & A. Schramm, 2009. Nitrous oxide emission by aquatic macrofauna. Proceedings of the National Academy of Sciences 106: 4296–4300.

    Article  Google Scholar 

  • Stocum, E. T. & C. J. Plante, 2006. The effect of artificial defaunation on bacterial assemblages of intertidal sediments. Journal of Experimental Marine Biology and Ecology 337: 147–158.

    Article  CAS  Google Scholar 

  • Strauss, E. A., N. L. Mitchel & G. A. Lamberti, 2002. Factors regulating nitrification in aquatic sediments: effects of organic carbon, nitrogen availability, and pH. Canadian Journal of Fish and Aquatic Science 59: 554–563.

    Article  CAS  Google Scholar 

  • Svensson, J. M., 1997. Influence of Chironomus plumosus L. on ammonium flux and denitrification (measured by the acetylene blockage- and the isotope pairing-technique) eutrophic lake sediment. Hydrobiologia 346: 157–168.

    Article  CAS  Google Scholar 

  • Svensson, J. M., A. Enrich-Prast & L. Leonardson, 2001. Nitrification and denitrification in a eutrophic lake sediment bioturbated by oligochaetes. Aquatic Microbial Ecology 23: 177–186.

    Article  Google Scholar 

  • Tuominen, L., K. Mäkelä, K. K. Lehtonen, H. Haahti, S. Hietanen & J. Kuparinen, 1999. Nutrient fluxes, porewater profiles and denitrification in sediment influenced by algal sedimentation and bioturbation by Monoporeia. Estuarine, Coastal and Shelf Science 49: 83–97.

    Article  CAS  Google Scholar 

  • Viaroli, P., G. Giordani, M. Bartoli, M. Naldi, R. Azzoni, D. Nizzoli, I. Ferrari, J. M. Zaldìvar, S. Bencivelli, G. Castaldelli & E. A. Fano, 2006. The Sacca di Goro lagoon and an arm of the Po River. In Wangersky, P. J. (ed.), The Handbook of Environmental Chemistry, Estuaries, Vol. 5. Springer, Berlin: 197–232.

    Google Scholar 

  • Waldbusser, G. G. & R. L. Marinelli, 2006. Macrofaunal modification of porewater advection: role of species function, species interaction, and kinetics. Marine Ecology Progress Series 311: 217–231.

    Article  Google Scholar 

  • Weiss, R. F., 1970. The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Research and Oceanographic Abstracts 17: 721–735.

    Article  CAS  Google Scholar 

  • Zettler, M. L. & D. Daunys, 2007. Long-term macrozoobenthos changes in a shallow boreal lagoon: comparison of a recent biodiversity inventory with historical data. Limnologica 37: 107–185.

    Article  Google Scholar 

  • Zhang, L., X. Gu, C. Fan, J. Shang, Q. Shen, Z. Wang & J. Shen, 2010. Impact of different benthic animals on phosphorus dynamics across the sediment-water interface. Journal of Environmental Science 22: 1674–1682.

    Article  CAS  Google Scholar 

  • Zilius, M., G. Giordani, J. Petkuviene, I. Lubiene, T. Ruginis & M. Bartoli, 2015. Phosphorus mobility under short-term anoxic conditions in two shallow eutrophic coastal systems (Curonian and Sacca di Goro lagoons). Estuarine, Coastal and Shelf Science 164: 134–146.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Paula Carpintero Moraes was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brasil). Mindaugas Zilius and Marco Bartoli were partly supported by the BONUS project “Nutrient Cocktails in Coastal zones of the Baltic Sea (COCOA)” (No. BONUS-2/2014). We kindly acknowledge Irma Vybernaite-Lubiene and Tomas Ruginis for assistance in laboratory analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Bartoli.

Additional information

Handling editor: Jonne Kotta

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carpintero Moraes, P., Zilius, M., Benelli, S. et al. Nitrification and denitrification in estuarine sediments with tube-dwelling benthic animals. Hydrobiologia 819, 217–230 (2018). https://doi.org/10.1007/s10750-018-3639-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3639-3

Keywords

Navigation