Skip to main content

Advertisement

Log in

Bacterial community dynamics during biostimulation and bioaugmentation experiments aiming at chlorobenzene degradation in groundwater

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

A set of microcosm experiments was performed to assess different bioremediation strategies, i.e., biostimulation and bioaugmentation, for groundwater contaminated with chlorobenzenes. The biodegradative potential was stimulated either by the supply of electron acceptors (air, (NO 3 ), to increase the activity of the indigenous bacterial community, or by the addition of aerobic chlorobenzene-degrading bacteria (Pseudomonas putida GJ31, Pseudomonas aeruginosa RHOl, Pseudomonas putida F1ΔCC). Experiments were performed with natural groundwater of the aquifer of Bitterfeld, which had been contaminated with 1,2-dichlorobenzene (1,2-DCB), 1,4-dichlorobenzene (1,4-DCB), and chlorobenzene (CB). The microcosms consisted of airtight glass bottles with 800 mL of natural groundwater and were incubated under in situ temperature (13°C). Behavior of the introduced strains within the indigenous bacterial community was monitored by fluorescent in situ hybridization (FISH) with species-specific oligonucleotides. Dynamics of the indigenous community and the introduced strains within the microcosms were followed by single-strand conformation polymorphism (SSCP) analysis of 16S rDNA amplicons obtained from total DNA of the microbial community. An indigenous biodegradation potential under aerobic as well as anaerobic denitrifying conditions was observed accompanied by fast and specific changes in the natural bacterial community composition. Augmentation with P. aeruginosa RHO1 did not enhance bio-degradation. In contrast, both P. putida GJ31 as well as P. putida F1ΔCC were capable of growing in groundwater, even in the presence of the natural microbial community, and thereby stimulating chlorobenzene depletion. P. putida GJ31 disappeared when the xenobiotics were depleted and P. putida F1ΔCC persisted even in the absence of CB. Detailed statistical analyses revealed that community dynamics of the groundwater microbiota were highly reproducible but specific to the introduced strain, its inoculum size, and the imposed physicochemical conditions. These findings could contribute to the design of better in situ bioremediation strategies for contaminated groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adrian L, Szewzyk U, Wecke J, Gorisch H (2000) Bacterial dehalorespiration with chlorinated benzenes. Nature 408: 580–583

    Article  PubMed  CAS  Google Scholar 

  2. Amann R, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microb Rev 59:143–169

    CAS  Google Scholar 

  3. Bassam BJ, Caetano AG, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in Polyacrylamid gels. Anal Biochem 80:81–84

    Google Scholar 

  4. Boon N, Goris J, De Vos P, Verstraete W, Top EM (2000) Bioaugmentation of activated sludge by an indigenous 3-chloroaniline-degrading Comamonas testosteroni strain, I2gfp. Appl Environ Microbiol 66:2906–2913

    Article  PubMed  CAS  Google Scholar 

  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  6. Bragg JR, Prince RC, Harner EJ, Atlas RM (1994) Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 368:413–418

    Article  CAS  Google Scholar 

  7. Brunsbach TR, Reineke W (1994) Degradation of chlorobenzenes in soil slurry by a specialized organism. Appl Microbiol Biotechnol 42:415–420

    Article  PubMed  CAS  Google Scholar 

  8. Bulman TL, Newland M (1993) In situ bioventing of a diesel fuel spill. Hydrol Sei 8:297–308

    Article  Google Scholar 

  9. Cho JC, Kim SJ (2000) Computer-assisted PCR-single-strand conformation polymorphism analysis for assessing shift in soil bacterial community structure during bioremidiational treatments. World J Microbiol Biotechnol 16:231–235

    Article  CAS  Google Scholar 

  10. De Leij F, Sutton E, Whipps J, Fenlon J, Lynch J (1995) Impact of field release of genetically modified Pseudomonas fluoresceins on indigenous microbial populations of wheat. App Environ Microbiol 61:3443–3453

    Google Scholar 

  11. Delbès C, Moletta R, Godon J (2000) Monitoring of activity dynamics of an anaerobic digester bacterial community using 16S rRNA polymerase chain reaction-single-strand conformation polymorphism analysis. Environ Microbiol 2:506–515

    Article  PubMed  Google Scholar 

  12. Dorn E, Hellwig M, Reineke W, Knackmuss H-J (1974) Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch Microbiol 99:61–70

    Article  PubMed  Google Scholar 

  13. Duba AG, Jackson KJ, Jovanovich MC, Knapp RB, Taylor RT (1996) TCE remediation using in situ, resting-state bioaugmentation. Environ Sei Technol 30:1982–1989

    Article  CAS  Google Scholar 

  14. DuTeau NM, Rogers JD, Bartholomay CT, Reardon KF (1998) Species-specific oligonucleotides for enumeration of Pseudomonas putida Fl, Burkholderia sp. strain JS150, and Bacillus subtilis ATCC 7003 in biodegradation experiments. Appl Environ Microbiol 64:4994–4999

    PubMed  CAS  Google Scholar 

  15. Dybas MJ, Barcelona M, Bezborodnikov S, Davies S, Forney L, Heuer H, Kawka O, Mayotte T, Sepülveda-Torres L, Smalla K, Sneathen M, Tiedje J, Voice T, Wiggert DC, Witt DC, Criddle CS (1998) Pilot-scale evaluation of bioaugmentation for in-situ remediation of carbon tetrachloride-contaminated aquifer. Environ Sei Technol 32:3598–3611

    Article  CAS  Google Scholar 

  16. Fuhrman JA, Comeau DE, Hagström Å, Chan AM (1988) Extraction from natural planktonic microorganisms of DNA suitable for molecular biological studies. Appl Environ Microbiol 54:1426–1429

    PubMed  CAS  Google Scholar 

  17. Gerritse J, Drzyzga O, Kloetstra G, Keijmel M, Wiersum LP, Hutson R, Collins MD, Gottschal JC (1999) Influence of different electron donors and accepters on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1. Appl Environ Microbiol 65:5212–5221

    PubMed  CAS  Google Scholar 

  18. Haigler B, Nishino S, Spain J (1988) Degradation of 1,2-dichlorobenzene by a Pseudomonas sp. Appl Environ Microbiol 54:294–301

    PubMed  CAS  Google Scholar 

  19. Holliger C, Schumacher W (1994) Reductive dehalogenation as a respiratory process. Antonie van Leeuwenhoek 66:239–246

    Article  PubMed  CAS  Google Scholar 

  20. Lehning A (1998) PhD thesis. Technical University, Braunschweig, Germany

    Google Scholar 

  21. Mars AE, Kasberg T, Kaschabek SR, van Agteren MH, Janssen DB, Reineke W (1997) Microbial degradation of chloroaromatics: use of the mete-cleavage pathway for mineralization of chlorobenzene. J Bacteriol 179:4530–4537

    PubMed  CAS  Google Scholar 

  22. Miethling R, Karlson U (1996) Accelerated mineralization of pentachlorophenol in soil upon inoculation with Mycobacterium chlorophenolicum PCP1 and Sphingomonas chloro-phenolica RA2. Appl Environ Microbiol 62:4361–4366

    PubMed  CAS  Google Scholar 

  23. Neumann A, Wohlfarth G, Diekert G (1995) Properties of tetrachloroethene and trichloroethene dehalogenase of Dehalospirillum multivorans. Arch Microbiol 163:276–281

    Article  CAS  Google Scholar 

  24. Nishino SF, Spain JC, Belcher LA, Litchfield CD (1992) Chlorobenzene degradation by bacteria isolated from contaminated groundwater. Appl Environ Microbiol 58:1719–1726

    PubMed  CAS  Google Scholar 

  25. Oltmanns R, Rast H, Reineke W (1988) Degradation of 1,4-dichlorobenzene by enriched and constructed bacteria. Appl Microbiol Biotechnol 28:609–616

    Article  CAS  Google Scholar 

  26. Pieper DH, Stadler-Fritzsche K, Engesser K-H, Knackmuss H-J (1993) Metabolism of 2-chloro-4-methylphenoxyacetate by Alcaligenes eutrophus JMP 134. Arch Microbiol 160:169–178

    PubMed  CAS  Google Scholar 

  27. Popp P, Moder M (1997) Organische Analytik. UFZ-Bericht, Leipzig

    Google Scholar 

  28. Ramanand K, Balba MT, Duffy J (1993) Reductive dehalo-genation of chlorinated benzenes and toluenes under methanogenic conditions. Appl Environ Microbiol 59:3266–3272

    PubMed  CAS  Google Scholar 

  29. Ravatn R, Zehnder A, van der Meer J (1998) Low-frequency horizontal transfer of an element containing the chlorocatechol degradation genes from Pseudomonas sp. strain B13 to Pseudomonas putida Fl and to indigenous bacteria in laboratory-scale activated-sludge mircocosms. Appl Environ Microbiol 64:2126–2132

    PubMed  CAS  Google Scholar 

  30. Reineke W, Knackmuss H-J (1984) Microbial metabolism of haloaromatics: Isolation and properties of a chlorobenzene-degrading bacterium. Appl Environ Microbiol 47:395–402

    PubMed  CAS  Google Scholar 

  31. Relman DA (1993) Universal Bacterial 16S rDNA Amplification and Sequencing. American Society for Microbiology, Washington, DC

    Google Scholar 

  32. Ruske R, Hübner J, Böhme 0, Falke P (1997) Ergebnisse der geologisch-hydrogeologischen-geotechnischen Standorter kundung. UFZ-Bericht, Leipzig

    Google Scholar 

  33. Salanitro JP, Johnson PC, Spinnler GE, Maner PM, Wisniewski HL, Bruce C (2000) Field scale demonstration of enhanced MTBE bioremediation through aquifer bioaugmentation and oxygenation. Environ Sei Technol 34:4152–4162

    Article  CAS  Google Scholar 

  34. Schwieger F, Tebbe CC (1998) A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 64:4870–4876

    PubMed  CAS  Google Scholar 

  35. Sneath PHA, Sokal RR (1973) Numerical Taxonomy. Freeman, San Francisco

    Google Scholar 

  36. Stoffels M, Amann R, Ludwig W, Hekmat D, Schleifer K (1998) Bacterial community dynamics during start-up of a trickle-bed bioreactor degrading aromatic compounds. Appl Environ Microbiol 64:930–939

    PubMed  CAS  Google Scholar 

  37. Tchelet R, Meckenstock R, Steinle P, van der Meer JR (1999) Population dynamics of an introduced bacterium degrading chlorinated benzenes in a soil column and in sewage sludge. Biodegradation 10:113–125

    Article  PubMed  CAS  Google Scholar 

  38. Tranvik L, Höfle M (1987) Bacterial growth in mixed cultures on dissolved organic carbon from humic and clear waters. Appl Environ Microbiol 53:482–488

    PubMed  CAS  Google Scholar 

  39. Utkin I, Dalton DD, Wiegel J (1995) Specificity of reductive dehalogenation of substituted ortho-chlorophenols by Desulfitobacterium dehalogenans JW/IU-DC1. Appl Environ Microbiol 61:346–351

    PubMed  CAS  Google Scholar 

  40. van de Pas BA, Smidt H, Hagen WR, van der Oost J, Schraa G, Stams AJM, de Vos WM (1999) Purification and molecular characterization of orho-chlorophenol reductive dehalogenase, a key enzyme of halorespiration in Desulfitobacterium dehalogenans. J Biol Chem 274:20287–20292

    Article  PubMed  Google Scholar 

  41. van der Meer J, Eggen R, Zehnder A, de Vos W (1991) Sequence analysis of the Pseudomonas sp. strain P51 tcb gene cluster, which encodes metabolism of chlorinated catechols: evidence for specialization of catechol 1,2-dioxygenases for chlorinated substrates. J Bacteriol 173:2425–2434

    PubMed  Google Scholar 

  42. van der Meer J, Roelofson W, Schraa G, Zehnder A (1987) Degradation of low concentrations of dichlorobenzenes and 1,2,4-trichlorobenzene by Pseudomonas sp. strain P51 in nonsterile soil columns. FEMS Microbiol Ecol 45:333–341

    Article  Google Scholar 

  43. van der Meer J, Werklen C, Nishino S, Spain J (1998) Evolution of a pathway for chlorobenzene metabolism leads to natural attenuation in contaminated groundwater. Appl Environ Microbiol 64:4185–4193

    PubMed  Google Scholar 

  44. Van Limbergen H, Topp EM, Verstraete W (1998) Bioaugmentation in activated sludge: current features and future perspective. Appl Microbiol Biotechnol 50:16–23

    Article  Google Scholar 

  45. Watanabe K, Yamamoto S, Hino S, Harayama S (1998) Population dynamics of phenol-degrading bacteria in activated sludge determined by gyrB-targeted quantitative PCR. Appl Environ Microbiol 64:1203–1209

    PubMed  CAS  Google Scholar 

  46. Weinbauer MG, Beckmann C, Höfle MG (1998) Utility of green fluorescent nucleic acid dyes and aluminum oxide membrane filters for rapid epifluorescence enumeration of soil and sediment bacteria. Appl Environ Microbiol 64:5000–5003

    PubMed  CAS  Google Scholar 

  47. Weiß H, Kopinke F, Popp P, Wünsche L (1998) In situ remediation research in a complexly contaminated aquifer: the SAFIRA test site at Bitterfeld. Germany-NATO/CCMS Pilot Study Special Session 229:84–91

    Google Scholar 

  48. Wikstrom P, Hagglund L, Forsman M (2000) Structure of a natural microbial community in a nitroaromatic contaminated groundwater is altered during biodégradation of extrinsic, but not intrinsic substrates. Microb Ecol 39:203–210

    PubMed  CAS  Google Scholar 

  49. Zylstra G, McCombie W, Gibson D, Finette B (1988) Toluene degradation by Pseudomonas putida F1: genetic organization of the tod Operon. Appl Environ Microbiol 54:1498–1503

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. F. Wenderoth.

Additional information

Online publication: 6 June 2003

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wenderoth, D.F., Rosenbrock, P., Abraham, W.R. et al. Bacterial community dynamics during biostimulation and bioaugmentation experiments aiming at chlorobenzene degradation in groundwater. Microb Ecol 46, 161–176 (2003). https://doi.org/10.1007/s00248-003-2005-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-003-2005-8

Keywords

Navigation