Skip to main content

Advertisement

Log in

Functional and anatomical imaging in pediatric oncology: which is best for which tumors

  • Pediatric oncologic imaging
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Functional imaging techniques are playing an increasingly important role in the management of pediatric cancer. Technological advances have pushed the development of hybrid imaging techniques, including positron emission tomography (PET)/CT, PET/MR and single-photon emission computed tomography (SPECT)/CT. Together with an increasing need to identify surrogate biomarkers for response to novel therapies, the use of functional imaging techniques, which had been reserved primarily for lymphoma patients, is now being recognized as standard of care for the management of many other pediatric solid tumors. The purpose of this review is to summarize recent data describing the use of functional and metabolic imaging strategies for the staging and response assessment of common pediatric solid tumors, and to offer some guidance as to which techniques are most appropriate for which tumor types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brisse HJ, McCarville MB, Granata C et al (2011) Guidelines for imaging and staging of neuroblastic tumors: consensus report from the international neuroblastoma risk group project. Radiology 261:243–257

    Article  PubMed  Google Scholar 

  2. Dumba M, Jawad N, McHugh K (2015) Neuroblastoma and nephroblastoma: a radiological review. Cancer Imaging 15(5)

  3. Kembhavi SA, Rangarajan V, Shah S et al (2014) Prospective observational study on diagnostic accuracy of whole-body MRI in solid small round cell tumours. Clin Radiol 69:900–908

    Article  CAS  PubMed  Google Scholar 

  4. Parisi MT, Eslamy H, Park JR et al (2016) (1)(3)(1)I-metaiodobenzylguanidine theranostics in neuroblastoma: historical perspectives; practical applications. Semin Nucl Med 46:184–202

    Article  PubMed  Google Scholar 

  5. Park JR, Bagatell R, Cohn SL et al (2017) Revisions to the international neuroblastoma response criteria: a consensus statement from the National Cancer Institute clinical trials planning meeting. J Clin Oncol 35:2580–2587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pfluger T, Piccardo A (2017) Neuroblastoma: MIBG imaging and new tracers. Semin Nucl Med 47:143–157

    Article  PubMed  Google Scholar 

  7. Sharp SE, Trout AT, Weiss BD et al (2016) MIBG in neuroblastoma diagnostic imaging and therapy. Radiographics 36:258–278

    Article  PubMed  Google Scholar 

  8. DuBois SG, Mody R, Naranjo A et al (2017) MIBG avidity correlates with clinical features, tumor biology, and outcomes in neuroblastoma: a report from the Children's oncology group. Pediatr Blood Cancer 64

  9. Gauguet JM, Pace-Emerson T, Grant FD et al (2017) Evaluation of the utility of (99m) Tc-MDP bone scintigraphy versus MIBG scintigraphy and cross-sectional imaging for staging patients with neuroblastoma. Pediatr Blood Cancer 64

  10. Bleeker G, Tytgat GA, Adam JA et al (2015) 123I-MIBG scintigraphy and 18F-FDG-PET imaging for diagnosing neuroblastoma. Cochrane Database Syst Rev (2015):CD009263

  11. Matthay KK, Shulkin B, Ladenstein R et al (2010) Criteria for evaluation of disease extent by (123)I-metaiodobenzylguanidine scans in neuroblastoma: a report for the international neuroblastoma risk group (INRG) task force. Br J Cancer 102:1319–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yanik GA, Parisi MT, Naranjo A et al (2018) Validation of postinduction curie scores in high-risk neuroblastoma: a Children's oncology group and SIOPEN group report on SIOPEN/HR-NBL1. J Nucl Med 59:502–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ladenstein R, Lambert B, Potschger U et al (2018) Validation of the mIBG skeletal SIOPEN scoring method in two independent high-risk neuroblastoma populations: the SIOPEN/HR-NBL1 and COG-A3973 trials. Eur J Nucl Med Mol Imaging 45:292–305

    Article  PubMed  Google Scholar 

  14. Ganzberg S (2017) The FDA warning on anesthesia drugs. Anesth Prog 64:57–58

    Article  PubMed  PubMed Central  Google Scholar 

  15. Flood TF, Stence NV, Maloney JA et al (2017) Pediatric brain: repeated exposure to linear gadolinium-based contrast material is associated with increased signal intensity at unenhanced T1-weighted MR imaging. Radiology 282:222–228

    Article  PubMed  Google Scholar 

  16. Goischke HK (2017) Safety assessment of gadolinium-based contrast agents (GBCAs) requires consideration of long-term adverse effects in all human tissues. Mult Scler J Exp Transl Clin 3:2055217317704450

    PubMed  PubMed Central  Google Scholar 

  17. Callahan MJ, MacDougall RD, Bixby SD et al (2018) Ionizing radiation from computed tomography versus anesthesia for magnetic resonance imaging in infants and children: patient safety considerations. Pediatr Radiol 48:21–30

    Article  PubMed  Google Scholar 

  18. Towbin AJ, Meyers RL, Woodley H et al (2018) 2017 PRETEXT: radiologic staging system for primary hepatic malignancies of childhood revised for the Paediatric hepatic international tumour trial (PHITT). Pediatr Radiol 48:536–554

    Article  PubMed  Google Scholar 

  19. Mody RJ, Pohlen JA, Malde S et al (2006) FDG PET for the study of primary hepatic malignancies in children. Pediatr Blood Cancer 47:51–55

    Article  PubMed  Google Scholar 

  20. Cistaro A, Treglia G, Pagano M et al (2013) A comparison between (1)(8)F-FDG PET/CT imaging and biological and radiological findings in restaging of hepatoblastoma patients. Biomed Res Int 2013:709037

    Article  PubMed  PubMed Central  Google Scholar 

  21. Begent J, Sebire NJ, Levitt G et al (2011) Pilot study of F(18)-fluorodeoxyglucose positron emission tomography/computerised tomography in Wilms' tumour: correlation with conventional imaging, pathology and immunohistochemistry. Eur J Cancer 47:389–396

    Article  PubMed  Google Scholar 

  22. Moinul Hossain AK, Shulkin BL, Gelfand MJ et al (2010) FDG positron emission tomography/computed tomography studies of Wilms' tumor. Eur J Nucl Med Mol Imaging 37:1300–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Provenzi M, Saettini F, Conter V et al (2013) Is there a role for FDG-PET for the assessment of treatment efficacy in Wilms' tumor? A case report and literature review. Pediatr Hematol Oncol 30:633–639

    Article  CAS  PubMed  Google Scholar 

  24. Harrison DJ, Parisi MT, Shulkin BL (2017) The role of (18)F-FDG-PET/CT in pediatric sarcoma. Semin Nucl Med 47:229–241

    Article  PubMed  Google Scholar 

  25. Hurley C, McCarville MB, Shulkin BL et al (2016) Comparison of (18) F-FDG-PET-CT and bone scintigraphy for evaluation of osseous metastases in newly diagnosed and recurrent osteosarcoma. Pediatr Blood Cancer 63:1381–1386

    Article  PubMed  PubMed Central  Google Scholar 

  26. Croteau NJ, Heaton TE (2019) Pulmonary metastasectomy in pediatric solid tumors. Children 6

  27. McCarville MB, Billups C, Wu J et al (2013) The role of PET/CT in assessing pulmonary nodules in children with solid malignancies. AJR Am J Roentgenol 201:W900–W905

    Article  PubMed  PubMed Central  Google Scholar 

  28. Byun BH, Kong CB, Lim I et al (2014) Early response monitoring to neoadjuvant chemotherapy in osteosarcoma using sequential (1)(8)F-FDG PET/CT and MRI. Eur J Nucl Med Mol Imaging 41:1553–1562

    Article  CAS  PubMed  Google Scholar 

  29. Hawkins DS, Conrad EU 3rd, Butrynski JE et al (2009) [F-18]-fluorodeoxy-D-glucose-positron emission tomography response is associated with outcome for extremity osteosarcoma in children and young adults. Cancer 115:3519–3525

    Article  PubMed  Google Scholar 

  30. Sharp SE, Shulkin BL, Gelfand MJ et al (2017) FDG PET/CT appearance of local osteosarcoma recurrences in pediatric patients. Pediatr Radiol 47:1800–1808

    Article  PubMed  Google Scholar 

  31. Hawkins DS, Schuetze SM, Butrynski JE et al (2005) [18F] fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J Clin Oncol 23:8828–8834

    Article  PubMed  Google Scholar 

  32. Uslu L, Donig J, Link M et al (2015) Value of 18F-FDG PET and PET/CT for evaluation of pediatric malignancies. J Nucl Med 56:274–286

    Article  CAS  PubMed  Google Scholar 

  33. Federico SM, Spunt SL, Krasin MJ et al (2013) Comparison of PET-CT and conventional imaging in staging pediatric rhabdomyosarcoma. Pediatr Blood Cancer 60:1128–1134

    Article  PubMed  Google Scholar 

  34. Borinstein SC, Steppan D, Hayashi M et al (2018) Consensus and controversies regarding the treatment of rhabdomyosarcoma. Pediatr Blood Cancer 65

  35. Alcorn KM, Deans KJ, Congeni A et al (2013) Sentinel lymph node biopsy in pediatric soft tissue sarcoma patients: utility and concordance with imaging. J Pediatr Surg 48:1903–1906

    Article  PubMed  Google Scholar 

  36. Wagner LM, Kremer N, Gelfand MJ et al (2017) Detection of lymph node metastases in pediatric and adolescent/young adult sarcoma: sentinel lymph node biopsy versus fludeoxyglucose positron emission tomography imaging — a prospective trial. Cancer 123:155–160

    Article  CAS  PubMed  Google Scholar 

  37. Casey DL, Wexler LH, Fox JJ et al (2014) Predicting outcome in patients with rhabdomyosarcoma: role of [(18)f]fluorodeoxyglucose positron emission tomography. Int J Radiat Oncol Biol Phys 90:1136–1142

    Article  PubMed  Google Scholar 

  38. Mueller WP, Melzer HI, Schmid I et al (2013) The diagnostic value of 18F-FDG PET and MRI in paediatric histiocytosis. Eur J Nucl Med Mol Imaging 40:356–363

    Article  PubMed  Google Scholar 

  39. Kim JR, Yoon HM, Jung AY et al (2019) Comparison of whole-body MRI, bone scan, and radiographic skeletal survey for lesion detection and risk stratification of Langerhans cell histiocytosis. Sci Rep 9:317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nievelstein RA, Littooij AS (2016) Whole-body MRI in paediatric oncology. Radiol Med 121:442–453

    Article  PubMed  Google Scholar 

  41. Phillips M, Allen C, Gerson P et al (2009) Comparison of FDG-PET scans to conventional radiography and bone scans in management of Langerhans cell histiocytosis. Pediatr Blood Cancer 52:97–101

    Article  PubMed  Google Scholar 

  42. Tsai LL, Drubach L, Fahey F et al (2012) [18F]-fluorodeoxyglucose positron emission tomography in children with neurofibromatosis type 1 and plexiform neurofibromas: correlation with malignant transformation. J Neuro-Oncol 108:469–475

    Article  CAS  Google Scholar 

  43. Benz MR, Czernin J, Dry SM et al (2010) Quantitative F18-fluorodeoxyglucose positron emission tomography accurately characterizes peripheral nerve sheath tumors as malignant or benign. Cancer 116:451–458

    Article  CAS  PubMed  Google Scholar 

  44. Evans DGR, Salvador H, Chang VY et al (2017) Cancer and central nervous system tumor surveillance in pediatric neurofibromatosis 1. Clin Cancer Res 23:e46–e53

    Article  PubMed  Google Scholar 

  45. Malempati S, Weigel B, Ingle AM et al (2012) Phase I/II trial and pharmacokinetic study of cixutumumab in pediatric patients with refractory solid tumors and Ewing sarcoma: a report from the Children's oncology group. J Clin Oncol 30:256–262

    Article  CAS  PubMed  Google Scholar 

  46. Mosse YP, Voss SD, Lim MS et al (2017) Targeting ALK with crizotinib in pediatric anaplastic large cell lymphoma and inflammatory myofibroblastic tumor: a Children's oncology group study. J Clin Oncol 35:3215–3221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kong G, Hofman MS, Murray WK et al (2016) Initial experience with gallium-68 DOTA-octreotate PET/CT and peptide receptor radionuclide therapy for pediatric patients with refractory metastatic neuroblastoma. J Pediatr Hematol Oncol 38:87–96

    Article  CAS  PubMed  Google Scholar 

  48. Paterson BM, Roselt P, Denoyer D et al (2014) PET imaging of tumours with a 64Cu labeled macrobicyclic cage amine ligand tethered to Tyr3-octreotate. Dalton Trans 43:1386–1396

    Article  CAS  PubMed  Google Scholar 

  49. Pandit-Taskar N, Zanzonico P, Staton KD et al (2018) Biodistribution and dosimetry of (18)F-meta-fluorobenzylguanidine: a first-in-human PET/CT imaging study of patients with neuroendocrine malignancies. J Nucl Med 59:147–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan D. Voss.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voss, S.D. Functional and anatomical imaging in pediatric oncology: which is best for which tumors. Pediatr Radiol 49, 1534–1544 (2019). https://doi.org/10.1007/s00247-019-04489-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-019-04489-z

Keywords

Navigation