Skip to main content

Advertisement

Log in

Utility of late gadolinium enhancement in pediatric cardiac MRI

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Late gadolinium enhancement (LGE) cardiac magnetic resonance (MR) imaging sequence is increasingly used in the evaluation of pediatric cardiovascular disorders, and although LGE might be a normal feature at the sites of previous surgeries, it is pathologically seen as a result of extracellular space expansion, either from acute cell damage or chronic scarring or fibrosis. LGE is broadly divided into ischemic and non-ischemic patterns. LGE caused by myocardial infarction occurs in a vascular distribution and always involves the subendocardial portion, progressively involving the outer regions in a waveform pattern. Non-ischemic cardiomyopathies can have a mid-myocardial (either linear or patchy), subepicardial or diffuse subendocardial distribution. Idiopathic dilated cardiomyopathy can have a linear mid-myocardial pattern, while hypertrophic cardiomyopathy can have fine, patchy enhancement in hypertrophied and non-hypertrophied segments as well as right ventricular insertion points. Myocarditis and sarcoidosis have a mid-myocardial or subepicardial pattern of LGE. Fabry disease typically affects the basal inferolateral segment while Danon disease typically spares the septum. Pericarditis is characterized by diffuse or focal pericardial thickening and enhancement. Thrombus, the most common non-neoplastic cardiac mass, is characterized by absence of enhancement in all sequences, while neoplastic masses show at least some contrast enhancement, depending on the pathology. Regardless of the etiology, presence of LGE is associated with a poor prognosis. In this review, we describe the technical modifications required for performing LGE cardiac MR sequence in children, review and illustrate the patterns of LGE in children, and discuss their clinical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Meng H, Grosse-Wortmann L (2012) Gadolinium in pediatric cardiovascular magnetic resonance: what we know and how we practice. J Cardiovasc Magn Reson 14:56

    Article  PubMed  PubMed Central  Google Scholar 

  2. ACR Committee on Drugs and Contrast Media (2015) Manual on contrast media, version 10.1. http://www.acr.org/Quality-Safety/Resources/Contrast-Manual. Accessed 5 Nov 2015

  3. Klumpp B, Fenchel M, Hoeverlborn T et al (2006) Assessment of myocardial viability using delayed enhancement magnetic resonance imaging at 3.0 tesla. Investig Radiol 41:661–667

    Article  Google Scholar 

  4. Kellman P, Arai AE (2012) Cardiac imaging techniques for physicians: late enhancement. J Magn Reson Imaging 36:529–542

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fratz S, Chung T, Greil GF et al (2013) Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson 13:15–51

    Google Scholar 

  6. Kellenberger CJ, Yoo SJ, Buchel ERV (2007) Cardiovascular MR imaging in neonates and infants with congenital heart disease. Radiographics 27:5–18

    Article  PubMed  Google Scholar 

  7. Bailliard F, Hughes ML, Taylor AM (2008) Introduction to cardiac imaging in infants and children: techniques, potential, and role in the imaging work-up of various cardiac malformations and other pediatric heart conditions. Eur J Radiol 68:191–198

    Article  PubMed  Google Scholar 

  8. Ntsinjana HN, Hughes ML, Taylor AM (2011) The role of cardiovascular magnetic resonance in pediatric congenital heart disease. J Cardiovasc Magn Reson 13:51

    Article  PubMed  PubMed Central  Google Scholar 

  9. Harris MA, Johnston TR, Weinberg PM et al (2007) Delayed-enhancement cardiovascular magnetic resonance identifies fibrous tissue in children after surgery for congenital heart disease. J Thorac Cardiovasc Surg 133:676–681

    Article  PubMed  Google Scholar 

  10. Oosterhof T, Mulder BJM, Vliegen HW et al (2005) Corrected tetralogy of Fallot: delayed enhancement in right ventricular outflow tract. Radiology 237:868–871

    Article  PubMed  Google Scholar 

  11. Taylor AM, Dymarkowski S, Hamaekers P et al (2005) MR coronary angiography and late enhancement myocardial MR in children who underwent arterial switch surgery for transposition of great arteries. Radiology 234:542–547

    Article  PubMed  Google Scholar 

  12. Ylitalo P, Pitkanen OM, Lauerma K et al (2014) Late gadolinium enhancement (LGE) progresses with right ventricle volume in children after repair of tetralogy of Fallot. IJC Heart Vessel 3:15–20

    Article  Google Scholar 

  13. Preim U, Sommer P, Hoffmann J et al (2014) Delayed enhancement imaging in a contemporary patient cohort following correction of tetralogy of Fallot. Cardiol Young 10:1–8

    Google Scholar 

  14. Babu-Narayanan SV, Kilner PJ, Li W et al (2006) Ventricular fibrosis suggested by cardiovascular magnetic resonance in adults with repaired tetralogy of Fallot and its relationship to adverse markers of clinical outcome. Circulation 113:405–413

    Article  Google Scholar 

  15. Wald RM, Haber I, Wald R et al (2009) Effects of regional dysfunction and late gadolinium enhancement on global right ventricular function and exercise capacity in patients with repaired tetralogy of Fallot. Circulation 119:1370–1377

    Article  PubMed  PubMed Central  Google Scholar 

  16. Babu-Narayanan SV, Goktekin O, Moon JC et al (2005) Late gadolinium enhancement cardiovascular magnetic resonance of the systemic right ventricle in adults with previous atrial redirection surgery for transposition of the great arteries. Circulation 111:2091–2098

    Article  Google Scholar 

  17. Rathod RH, Prakash A, Powell AJ et al (2010) Myocardial fibrosis identified by cardiac magnetic resonance late gadolinium enhancement is associated with adverse ventricular mechanics and ventricular tachycardia late after Fontan operation. J Am Coll Cardiol 55:1721–1728

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rathod RH, Prakash A, Kim YY et al (2014) Cardiac magnetic resonance parameters predict transplantation-free survival in patients with Fontan circulation. Circ Cardiovasc Imaging 7:502–509

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rajiah P, Setser RM, Desai MY et al (2011) Utility of free-breathing, whole-heart three-dimensional magnetic resonance imaging in the assessment of coronary artery anatomy for congenital heart disease. Pediatr Cardiol 32:418–425

    Article  PubMed  Google Scholar 

  20. Febbo JA, Galizia MS, Murphy IG et al (2015) Congenital heart disease in adults: quantitative and qualitative evaluation of IR FLASH and IR SSFP MRA techniques using a blood pool contrast agent in the steady state and comparison to first pass MRA. Eur J Radiol 84:1921–1929

    Article  PubMed  Google Scholar 

  21. Gharib AM, Ho VB, Rosing DR et al (2008) Coronary artery anomalies and variants: technical feasibility of assessment with coronary MR angiography at 3T. Radiology 247:220–229

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sakuma H (2011) Coronary CT versus MR angiography: the role of MR angiography. Radiology 258:340–349

    Article  PubMed  Google Scholar 

  23. Dewey M (2011) Coronary CT versus MR angiography: pro CT — the role of CT angiography. Radiology 258:329–339

    Article  PubMed  Google Scholar 

  24. Rehwald WG, Fieno DS, Chen EL et al (2002) Myocardial magnetic resonance imaging contrast agent concentrations after reversible and irreversible ischemic injury. Circulation 105:224–229

    Article  PubMed  Google Scholar 

  25. Kim RJ, Wu F, Rafael A et al (2000) The use of contrast enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453

    Article  CAS  PubMed  Google Scholar 

  26. Rajiah P, Desai MY, Kwon D et al (2013) MR imaging of myocardial infarction. Radiographics 33:1383–1412

    Article  PubMed  Google Scholar 

  27. Mavrogeni S, Papadopoulos G, Douskou M et al (2006) Magnetic resonance angiography, function and viability evaluation in patients with Kawasaki disease. J Cardiovasc Magn Reson 8:493–498

    Article  PubMed  Google Scholar 

  28. Greil GF, Stuber M, Botnar RM et al (2002) Coronary magnetic resonance angiography in adolescents and young adults with Kawasaki disease. Circulation 105:908–911

    Article  PubMed  Google Scholar 

  29. Tacke CE, Romeih S, Kuipers IM et al (2013) Evaluation of cardiac function by magnetic resonance imaging during the follow-up of patients with Kawasaki disease. Circ Cardiovasc Imaging 6:67–73

    Article  PubMed  Google Scholar 

  30. Lipsett J, Cohle SD, Berry PJ et al (1994) Anomalous coronary arteries: a multicenter pediatric autopsy study. Pediatr Pathol 14:287–300

    Article  CAS  PubMed  Google Scholar 

  31. Kaushal S, Backer CL, Popescu AR et al (2011) Intramural coronary length correlates with symptoms in patients with anomalous aortic origin of the coronary artery. Ann Thorac Surg 92:986–991

    Article  PubMed  Google Scholar 

  32. Sunder KR, Balakrishnan KG, Tharakan JA et al (1997) Coronary artery fistula in children and adults: a review of 25 cases with long-term observations. Int J Cardiol 58:47–53

    Article  CAS  PubMed  Google Scholar 

  33. Saboo SS, Juan YH, Khandelwal A et al (2014) MDCT of congenital coronary artery fistulas. AJR Am J Roentgenol 203:W244–W252

    Article  PubMed  Google Scholar 

  34. Möhlenkamp S, Hort W, Ge J et al (2002) Update on myocardial bridging. Circulation 106:2616–2622

    Article  PubMed  Google Scholar 

  35. Sharma J, Hellenbrand W, Kleinman C et al (2011) Symptomatic myocardial bridges in children: a case report with review of literature. Cardiol Young 21:490–494

    Article  PubMed  Google Scholar 

  36. La Salvia EA, Gilkeson RC, Dahms BB et al (2006) Delayed contrast enhancement magnetic resonance imaging in congenital aortic stenosis. Pediatr Cardiol 27:388–390

    Article  PubMed  Google Scholar 

  37. Azevedo CF, Nigri M, Higuchi ML et al (2010) Prognostic significance of myocardial fibrosis quantification by histopathology and magnetic resonance imaging in patients with severe aortic valve disease. J Am Coll Cardiol 56:278–287

    Article  PubMed  Google Scholar 

  38. Robinson JD, Del Nido PJ, Geggel RL et al (2010) Left ventricular diastolic heart failure in teenagers who underwent balloon aortic valvuloplasty in early infancy. Am J Cardiol 106:426–429

    Article  PubMed  Google Scholar 

  39. Alvarez JA, Orav EJ, Wilkinson JD et al (2011) Competing risks for death and cardiac transplantation in children with dilated cardiomyopathy: results from the pediatric cardiomyopathy registry. Circulation 124:814–823

    Article  PubMed  PubMed Central  Google Scholar 

  40. McCrohon JA, Moon JC, Prasad SK et al (2003) Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 108:54–59

    Article  CAS  PubMed  Google Scholar 

  41. Masci PG, Schuurman R, Andrea B et al (2013) Myocardial fibrosis as a key determinant of left ventricular remodeling in idiopathic dilated cardiomyopathy: a contrast-enhanced cardiovascular magnetic study. Circ Cardiovasc Imaging 6:790–799

    Article  PubMed  Google Scholar 

  42. Koutalas E, Kanoupakis E, Vardas P (2013) Sudden cardiac death in non-ischemic dilated cardiomyopathy: a critical appraisal of existing and potential risk stratification tools. Int J Cardiol 167:335–341

    Article  PubMed  Google Scholar 

  43. Latus H, Gummel K, Klingel K et al (2015) Focal myocardial fibrosis assessed by late gadolinium enhancement cardiovascular magnetic resonance in children and adolescents with dilated cardiomyopathy. J Cardiovasc Magn Reson 17:34

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ho CY (2010) Genetics and clinical destiny: improving care in hypertrophic cardiomyopathy. Circulation 122:2430–2440

    Article  PubMed  PubMed Central  Google Scholar 

  45. To AC, Dillon A, Desai MY (2011) Cardiac magnetic resonance in hypertrophic cardiomyopathy. JACC Cardiovasc Imaging 4:1123–1137

    Article  PubMed  Google Scholar 

  46. Kwon DH, Smedira NG, Rodriguez ER et al (2009) Cardiac magnetic resonance detection of myocardial scarring in hypertrophic cardiomyopathy: correlation with histopathology and prevalence of ventricular tachycardia. J Am Coll Cardiol 54:242–249

    Article  PubMed  Google Scholar 

  47. Hussain T, Dragulescu A, Benson L et al (2015) Quantification and significance of diffuse myocardial fibrosis and diastolic dysfunction in childhood hypertrophic cardiomyopathy. Pediatr Cardiol 36:970–978

    Article  PubMed  Google Scholar 

  48. Smith BM, Dorfman AL, Yu S et al (2014) Clinical significance of late gadolinium enhancement in patients <20 years of age with hypertrophic cardiomyopathy. Am J Cardiol 113:1234–1239

    Article  PubMed  Google Scholar 

  49. Chaowu Y, Shihua Z, Jian L et al (2013) Cardiovascular magnetic resonance characteristics in children with hypertrophic cardiomyopathy. Circ Heart Fail 6:1013–1020

    Article  PubMed  Google Scholar 

  50. Ellims AH, Iles LM, Ling LH et al (2014) A comprehensive evaluation of myocardial fibrosis in hypertrophic cardiomyopathy with cardiac magnetic resonance imaging: linking genotype with fibrotic phenotype. Eur Heart J Cardiovasc Imaging 15:1108–1116

    Article  PubMed  Google Scholar 

  51. Rubinshtein R, Glockner JF, Ommen SR et al (2010) Characteristics and clinical significance of late gadolinium enhancement by contrast-enhanced magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Circ Heart Fail 3:51–58

    Article  PubMed  Google Scholar 

  52. Spinner JA, Noel CV, Denfield SW et al (2013) Utility of late gadolinium enhancement and left ventricular mass as assessed by cardiac magnetic resonance in children with hypertrophic cardiomyopathy. Circulation 128:A17300

    Google Scholar 

  53. Marcus FI, McKenna WJ, Sherrill D et al (2010) Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation 121:1533–1541

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jain A, Tandri H, Calkins H et al (2008) Role of cardiovascular magnetic resonance imaging in arrhythmogenic right ventricular dysplasia. J Cardiovasc Magn Reson 10:32

    Article  PubMed  PubMed Central  Google Scholar 

  55. Te Riele AS, Tandri H, Bluemke DA (2014) Arrhythmogenic right ventricular cardiomyopathy (ARVC): cardiovascular magnetic resonance update. J Cardiovasc Magn Reson 16:50

    Article  Google Scholar 

  56. Tandri H, Saranathan M, Rodriguez ER et al (2005) Noninvasive detection of myocardial fibrosis in arrhythmogenic right ventricular cardiomyopathy using delayed-enhancement magnetic resonance imaging. J Am Coll Cardiol 45:98–103

    Article  PubMed  Google Scholar 

  57. Tandri H, Macedo R, Calkins H et al (2008) Role of magnetic resonance imaging in arrhythmogenic right ventricular dysplasia: insights from the North American arrhythmogenic right ventricular dysplasia (ARVD/C) study. Am Heart J 155:147–153

    Article  PubMed  Google Scholar 

  58. Etoom Y, Govindapillai S, Hamilton R et al (2014) Importance of CMR within the task force criteria for the diagnosis of ARVC in children and adolescents. J Am Coll Cardiol 65:987–995

    Article  Google Scholar 

  59. Petersen SE, Selvanayagam JB, Wiesmann F et al (2005) Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J Am Coll Cardiol 46:101–105

    Article  PubMed  Google Scholar 

  60. Cheng H, Lu M, Hou C et al (2015) Comparison of cardiovascular magnetic resonance characteristics and clinical consequences in children and adolescents with isolated left ventricular non-compaction with and without late gadolinium enhancement. J Cardiovasc Magn Reson 17:44

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wan J, Zhao S, Cheng H et al (2013) Varied distributions of late gadolinium enhancement found among patients meeting cardiovascular magnetic resonance criteria for isolated left ventricular non-compaction. J Cardiovasc Magn Reson 15:20

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nucifora G, Aquaro GD, Pingitore A et al (2011) Myocardial fibrosis in isolated left ventricular non-compaction and its relation to disease severity. Eur J Heart Fail 13:170–176

    Article  PubMed  Google Scholar 

  63. Vignaux O (2005) Cardiac sarcoidosis: spectrum of MRI features. AJR Am J Roentgenol 184:249–254

    Article  PubMed  Google Scholar 

  64. Watanabe E, Kimura F, Nakajima T et al (2013) Late gadolinium enhancement in cardiac sarcoidosis: characteristic magnetic resonance findings and relationship with left ventricular function. J Thorac Imaging 28:60–66

    Article  PubMed  Google Scholar 

  65. Greulich S, Deluigi CC, Gloekler S et al (2013) CMR imaging predicts death and other adverse events in suspected cardiac sarcoidosis. JACC Cardiovasc Imaging 6:501–511

    Article  PubMed  Google Scholar 

  66. Vignaux O, Dhote R, Duboc D et al (2002) Clinical significance of myocardial magnetic resonance abnormalities in patients with sarcoidosis: a 1-year follow-up study. Chest 122:1895–1901

    Article  PubMed  Google Scholar 

  67. Nakao S, Takanaka T, Maoda M et al (1995) An atypical variant of Fabry’s disease in man with left ventricular hypertrophy. N Engl J Med 33:288–293

    Article  Google Scholar 

  68. Sachdev B, Takanaka T, Teraguchi H et al (2002) Prevalence of Anderson-Fabry disease in male patients with late onset hypertrophic cardiomyopathy. Circulation 105:1407–1411

    Article  CAS  PubMed  Google Scholar 

  69. Chimenti C, Pieroni M, Morgante E et al (2004) Prevalence of Fabry disease in female patients with late-onset hypertrophic cardiomyopathy. Circulation 110:1047–1053

    Article  CAS  PubMed  Google Scholar 

  70. Moon JC, Sheppard M, Reed E et al (2006) The histological basis of late gadolinium enhancement cardiovascular magnetic resonance in a patient with Anderson-Fabry disease. J Cardiovasc Magn Reson 8:479–482

    Article  PubMed  Google Scholar 

  71. De Cobelli F, Esposito A, Belloni E et al (2009) Delayed-enhanced cardiac MRI for differentiation of Fabry’s disease from symmetric hypertrophic cardiomyopathy. AJR Am J Roentgenol 192:W97–W102

    Article  PubMed  Google Scholar 

  72. Krämer J, Niemann M, Störk S et al (2014) Relation of burden of myocardial fibrosis to malignant ventricular arrhythmias and outcomes in Fabry disease. Am J Cardiol 114:895–900

    Article  PubMed  Google Scholar 

  73. Yang Z, McMahon CJ, Smith LR et al (2005) Danon disease as an underrecognized cause of hypertrophic cardiomyopathy in children. Circulation 112:1612–1617

    Article  PubMed  Google Scholar 

  74. Piotrowska-Kownacka D, Kownacki L, Kuch M et al (2009) Cardiovascular magnetic resonance findings in a case of Danon disease. J Cardiovasc Magn Reson 11:12

    Article  PubMed  PubMed Central  Google Scholar 

  75. Tada H, Harimura Y, Yamasaki H et al (2010) Utility of real-time 3-dimensional echocardiography and magnetic resonance imaging for evaluation of Danon disease. Circulation 121:e390–e392

    Article  PubMed  Google Scholar 

  76. Dara BS, Rusconi PG, Fishman JE (2011) Danon disease: characteristic late gadolinium enhancement pattern on cardiac magnetic resonance imaging. Cardiol Young 21:707–709

    Article  PubMed  Google Scholar 

  77. Silva MC, Meira ZM, Gurgel Giannetti J et al (2007) Myocardial delayed enhancement by magnetic resonance imaging in patients with muscular dystrophy. J Am Coll Cardiol 49:1874–1879

    Article  PubMed  Google Scholar 

  78. Hor KN, Taylor MD, Al-Khalidi HR et al (2013) Prevalence and distribution of late gadolinium enhancement in a large population of patients with Duchenne muscular dystrophy: effect of age and left ventricular systolic function. J Cardiovasc Magn Reson 15:107

    Article  PubMed  PubMed Central  Google Scholar 

  79. Puchalski MD, Williams RV, Askovich B et al (2009) Late gadolinium enhancement: precursor to cardiomyopathy in Duchenne muscular dystrophy? Int J Cardiovasc Imaging 25:57–63

    Article  PubMed  Google Scholar 

  80. Dittrich S, Tuerk M, Haaker G et al (2015) Cardiomyopathy in Duchenne muscular dystrophy: current value of clinical, electrophysiological and imaging findings in children and teenagers. Klin Padiatr 227:225–231

    Article  CAS  PubMed  Google Scholar 

  81. Walcher T, Steinbach P, Spiess J et al (2011) Detection of long-term progression of myocardial fibrosis in Duchenne muscular dystrophy in an affected family: a cardiovascular magnetic resonance study. Eur J Radiol 80:115–119

    Article  PubMed  Google Scholar 

  82. Yilmaz A, Gdynia HJ, Ludolph AC et al (2010) Images in cardiovascular medicine. Cardiomyopathy in a Duchenne muscular dystrophy carrier and her diseased son: similar pattern revealed by cardiovascular MRI. Circulation 121:e237–e239

    Article  PubMed  Google Scholar 

  83. Friedrich MG, Sechtem U, Schulz-Menger J et al (2009) Cardiovascular magnetic resonance in myocarditis: a JACC white paper. J Am Coll Cardiol 53:1475–1487

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sachdeva S, Song X, Dham N et al (2015) Analysis of clinical parameters and cardiac magnetic resonance imaging as predictors of outcome in pediatric myocarditis. Am J Cardiol 115:499–504

    Article  PubMed  Google Scholar 

  85. Zagrosek A, Abdel-Aty H, Boye P et al (2009) Cardiac magnetic resonance monitors: reversible and irreversible myocardial injury in myocarditis. JACC: Cardiovasc Imaging 2:131–138

    Google Scholar 

  86. Wagner A, Schulz-Menger J, Dietz R et al (2003) Long-term follow-up of patients with acute myocarditis by magnetic resonance imaging. MAGMA 16:17–20

    Article  PubMed  Google Scholar 

  87. Mahrholdt H, Wagner A, Deluigi CC et al (2006) Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation 114:1581–1590

    Article  PubMed  Google Scholar 

  88. Zurick AO, Bolen MA, Kwon DH et al (2011) Pericardial delayed hyperenhancement with CMR imaging in patients with constrictive pericarditis undergoing surgical pericardiectomy: a case series with histopathological correlation. JACC Cardiovasc Imaging 4:1180–1191

    Article  PubMed  Google Scholar 

  89. Rajiah P (2011) Cardiac MRI: part 2, pericardial diseases. AJR Am J Roentgenol 197:W621–W634

    Article  PubMed  Google Scholar 

  90. Feng D, Glockner J, Kim K et al (2011) Cardiac magnetic resonance imaging pericardial late gadolinium enhancement and elevated inflammatory markers can predict the reversibility of constrictive pericarditis after anti-inflammatory medical therapy: a pilot study. Circulation 124:1830–1837

    Article  CAS  PubMed  Google Scholar 

  91. Weinsaft JW, Kim HW, Shah DJ et al (2008) Detection of left ventricular thrombus by delayed-enhancement cardiovascular magnetic resonance prevalence and markers in patients with systolic dysfunction. J Am Coll Cardiol 52:148–157

    Article  PubMed  Google Scholar 

  92. Lam KY, Dickens P, Chan AC (1993) Tumors of the heart. A 20-year experience with a review of 12,485 consecutive autopsies. Arch Pathol Lab Med 117:1027–1031

    CAS  PubMed  Google Scholar 

  93. Tao TY, Yahyavi-Firouz-Abadi N, Singh GK et al (2014) Pediatric cardiac tumors: clinical and imaging features. Radiographics 34:1031–1046

    Article  PubMed  Google Scholar 

  94. Beroukhim RS, Prakash A, Buechel ER et al (2011) Characterization of cardiac tumors in children by cardiovascular magnetic resonance imaging: a multicenter experience. J Am Coll Cardiol 58:1044–1054

    Article  PubMed  Google Scholar 

  95. Grebenc ML, Rosado de Christenson ML, Burke AP et al (2000) Primary cardiac and pericardial neoplasms: radiologic– pathologic correlation. Radiographics 20:1073–1103

    Article  CAS  PubMed  Google Scholar 

  96. Ghadimi Mahani M, Lu JC, Rigsby CK et al (2014) MRI of pediatric cardiac masses. AJR Am J Roentgenol 202:971–981

    Article  PubMed  Google Scholar 

  97. Huh J, Noh CI, Kim YW et al (1999) Secondary cardiac tumor in children. Pediatr Cardiol 20:400–403

    Article  CAS  PubMed  Google Scholar 

  98. Sparrow PJ, Kurian JB, Jones TR et al (2005) MR imaging of cardiac tumors. Radiographics 25:1255–1276

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhakar Rajiah.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etesami, M., Gilkeson, R.C. & Rajiah, P. Utility of late gadolinium enhancement in pediatric cardiac MRI. Pediatr Radiol 46, 1096–1113 (2016). https://doi.org/10.1007/s00247-015-3526-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-015-3526-2

Keywords

Navigation