Skip to main content
Log in

Cardiac magnetic resonance imaging in children

  • Minisymposium
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

MRI is an important additional tool in the diagnostic work-up of children with congenital heart disease. This review aims to summarise the role MRI has in this patient population. Echocardiography remains the main diagnostic tool in congenital heart disease. In specific situations, MRI is used for anatomical imaging of congenital heart disease. This includes detailed assessment of intracardiac anatomy with 2-D and 3-D sequences. MRI is particularly useful for assessment of retrosternal structures in the heart and for imaging large vessel anatomy. Functional assessment includes assessment of ventricular function using 2-D cine techniques. Of particular interest in congenital heart disease is assessment of right and single ventricular function. Two-dimensional and newer 3-D techniques to quantify flow in these patients are or will soon become an integral part of quantification of shunt size, valve function and complex flow patterns in large vessels. More advanced uses of MRI include imaging of cardiovascular function during stress and tissue characterisation of the myocardium. Techniques used for this purpose need further validation before they can become part of the daily routine of MRI assessment of congenital heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. van der Linde D, Konings EE, Slager MA et al (2011) Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol 58:2241–2247

    Article  PubMed  Google Scholar 

  2. Stuart AG (2012) Changing lesion demographics of the adult with congenital heart disease: an emerging population with complex needs. Futur Cardiol 8:305–313

    Article  Google Scholar 

  3. Marelli AJ, Mackie AS, Ionescu-Ittu R et al (2007) Congenital heart disease in the general population: changing prevalence and age distribution. Circulation 115:163–172

    Article  PubMed  Google Scholar 

  4. Beels L, Bacher K, De Wolf D et al (2009) Gamma-H2AX foci as a biomarker for patient X-ray exposure in pediatric cardiac catheterization: are we underestimating radiation risks? Circulation 120:1903–1909

    Article  CAS  PubMed  Google Scholar 

  5. Fratz S, Chung T, Greil GF et al (2013) Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson 15:51

    Article  PubMed Central  PubMed  Google Scholar 

  6. Valsangiacomo Buechel ER, Grosse-Wortmann L, Fratz S et al. (2014) Indications for cardiovascular magnetic resonance in children with congenital and acquired heart disease - An expert consensus paper of the Imaging Working Group of the AEPC and the Cardiovascular Magnetic Resonance Section of the EACVI. Eur Heart J Cardiovasc Imaging AND Cardiology in the Young in press.

  7. Anderson RH, Becker AE, Freedom RM et al (1984) Sequential segmental analysis of congenital heart disease. Pediatr Cardiol 5:281–287

    Article  CAS  PubMed  Google Scholar 

  8. Razavi RS, Hill DL, Muthurangu V et al (2003) Three-dimensional magnetic resonance imaging of congenital cardiac anomalies. Cardiol Young 13:461–465

    Article  PubMed  Google Scholar 

  9. Sorensen TS, Korperich H, Greil GF et al (2004) Operator-independent isotropic three-dimensional magnetic resonance imaging for morphology in congenital heart disease: a validation study. Circulation 110:163–169

    Article  PubMed  Google Scholar 

  10. Feder E, Meisner H, Bühlmeyer K et al (1980) Operative treatment of TGA: comparison of senning’s and mustard’s operation in patients under 2 years. Thorac Cardiovasc Surg 28:7–12

  11. Khairy P, Poirier N, Mercier L-A (2007) Univentricular heart. Circulation 115:800–812

    Article  PubMed  Google Scholar 

  12. Grosse-Wortmann L, Al-Otay A, Woo Goo H et al (2007) Anatomical and functional evaluation of pulmonary veins in children by magnetic resonance imaging. J Am Coll Cardio 49:993–1002

    Article  Google Scholar 

  13. Kellenberger C (2010) Aortic arch malformations. Pediatr Radiol 40:876–884

    Article  PubMed  Google Scholar 

  14. Knobel Z, Kellenberger C, Kaiser T et al (2011) Geometry and dimensions of the pulmonary artery bifurcation in children and adolescents: assessment in vivo by contrast-enhanced MR-angiography. Int J Cardiovasc Imaging 27:385–396

    Article  PubMed  Google Scholar 

  15. Konen E, Merchant N, Provost Y et al (2004) Coarctation of the aorta before and after correction: the role of cardiovascular MRI. AJR Am J Roentgenol 182:1333–1339

    Article  PubMed  Google Scholar 

  16. Norozi K, Wessel A, Alpers V et al (2006) Incidence and risk distribution of heart failure in adolescents and adults with congenital heart disease after cardiac surgery. Am J Cardiol 97:1238–1243

    Article  PubMed  Google Scholar 

  17. Helbing WA, Bosch HG, Maliepaard C et al (1995) Comparison of echocardiographic methods with magnetic resonance imaging for assessment of right ventricular function in children. Am J Cardiol 76:589–594

    Article  CAS  PubMed  Google Scholar 

  18. Sheehan FH, Ge S, Vick GW 3rd et al (2008) Three-dimensional shape analysis of right ventricular remodeling in repaired tetralogy of Fallot. Am J Cardiol 101:107–113

    Article  PubMed  Google Scholar 

  19. Rebergen SA, van der Wall EE, Helbing WA et al (1996) Quantification of pulmonary and systemic blood flow by magnetic resonance velocity mapping in the assessment of atrial-level shunts. Int J Card Imaging 12:143–152

    Article  CAS  PubMed  Google Scholar 

  20. Rebergen SA, Helbing WA, van der Wall EE et al (1995) MR velocity mapping of tricuspid flow in healthy children and in patients who have undergone Mustard or Senning repair. Radiology 194:505–512

    Article  CAS  PubMed  Google Scholar 

  21. Rebergen SA, van der Wall EE, Doornbos J et al (1993) Magnetic resonance measurement of velocity and flow: technique, validation, and cardiovascular applications. Am Heart J 126:1439–1456

    Article  CAS  PubMed  Google Scholar 

  22. Rebergen SA, Chin JG, Ottenkamp J et al (1993) Pulmonary regurgitation in the late postoperative follow-up of tetralogy of Fallot. Volumetric quantitation by nuclear magnetic resonance velocity mapping. Circulation 88:2257–2266

    Article  CAS  PubMed  Google Scholar 

  23. Rebergen SA, Ottenkamp J, Doornbos J et al (1993) Postoperative pulmonary flow dynamics after Fontan surgery: assessment with nuclear magnetic resonance velocity mapping. J Am Coll Cardiol 21:123–131

    Article  CAS  PubMed  Google Scholar 

  24. Alfakih K, Plein S, Thiele H et al (2003) Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 17:323–329

    Article  PubMed  Google Scholar 

  25. Buechel EV, Kaiser T, Jackson C et al (2009) Normal right- and left ventricular volumes and myocardial mass in children measured by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 11:19

    Article  PubMed Central  PubMed  Google Scholar 

  26. Robbers-Visser D, Boersma E, Helbing WA (2009) Normal biventricular function, volumes, and mass in children aged 8 to 17 years. J Magn Reson Imaging 29:552–559

  27. Sarikouch S, Peters B, Gutberlet M et al (2010) Sex-specific pediatric percentiles for ventricular size and mass as reference values for cardiac MRI: assessment by steady-state free-precession and phase-contrast MRI flow. Circ Cardiovasc Imaging 3:65–76

    Article  PubMed  Google Scholar 

  28. Luijnenburg S, Robbers-Visser D, Moelker A et al (2010) Intra-observer and interobserver variability of biventricular function, volumes and mass in patients with congenital heart disease measured by CMR imaging. Int J Cardiovasc Imaging 26:57–64

    Article  PubMed Central  PubMed  Google Scholar 

  29. Fratz S, Schuhbaeck A, Buchner C et al (2009) Comparison of accuracy of axial slices versus short-axis slices for measuring ventricular volumes by cardiac magnetic resonance in patients with corrected tetralogy of Fallot. Am J Cardiol 103:1764–1769

    Article  PubMed  Google Scholar 

  30. Strugnell WE, Slaughter IR, Riley RA et al (2005) Modified RV short axis series–a new method for cardiac MRI measurement of right ventricular volumes. J Cardiovasc Magn Reson 7:769–774

    Article  PubMed  Google Scholar 

  31. Beerbaum P, Körperich H, Barth P et al (2001) Noninvasive quantification of left-to-right shunt in pediatric patients: phase-contrast cine magnetic resonance imaging compared with invasive oximetry. Circulation 103:2476–2482

    Article  CAS  PubMed  Google Scholar 

  32. Grosse-Wortmann L, Al-Otay A, Yoo S-J (2009) Aortopulmonary collaterals after bidirectional cavopulmonary connection or Fontan completion: quantification with MRI. Circ Cardiovasc Imaging 2:219–225

    Article  PubMed  Google Scholar 

  33. Kilner PJ, Gatehouse PD, Firmin DN (2007) Flow measurement by magnetic resonance: a unique asset worth optimising. J Cardiovasc Magn Reson 9:723–728

    Article  PubMed  Google Scholar 

  34. Kozerke S, Hasenkam JM, Nygaard H et al (2001) Heart motion-adapted MR velocity mapping of blood velocity distribution downstream of aortic valve prostheses: initial experience. Radiology 218:548–555

    Article  CAS  PubMed  Google Scholar 

  35. Vogt F, Theysohn J, Michna D et al (2013) Contrast-enhanced time-resolved 4D MRA of congenital heart and vessel anomalies: image quality and diagnostic value compared with 3D MRA. Eur Radiol 23:2392–2404

    Article  PubMed  Google Scholar 

  36. Valverde I, Nordmeyer S, Uribe S et al (2012) Systemic-to-pulmonary collateral flow in patients with palliated univentricular heart physiology: measurement using cardiovascular magnetic resonance 4D velocity acquisition. J Cardiovasc Magn Reson 14:25

    Article  PubMed Central  PubMed  Google Scholar 

  37. Luijnenburg SE, Peters RE, van der Geest RJ et al (2013) Abnormal right atrial and right ventricular diastolic function relate to impaired clinical condition in patients operated for tetralogy of Fallot. Int J Cardiol 167:833–839

    Article  PubMed  Google Scholar 

  38. Kempny A, Fernandez-Jimenez R, Orwat S et al (2012) Quantification of biventricular myocardial function using cardiac magnetic resonance feature tracking, endocardial border delineation and echocardiographic speckle tracking in patients with repaired tetralogy of fallot and healthy controls. J Cardiovasc Magn Reson 14:32

    Article  PubMed Central  PubMed  Google Scholar 

  39. Robbers-Visser D, Luijnenburg SE, van den Berg J et al (2009) Stress imaging in congenital cardiac disease. Cardiol Young 19:552–562

    Article  PubMed  Google Scholar 

  40. Luijnenburg SE, Mekic S, van den Berg J et al (2013) Ventricular response to dobutamine stress relates to the change in peak oxygen uptake during the 5-year follow-up in young patients with repaired tetralogy of Fallot. Eur Heart J Cardiovasc Imaging 15:189–194

    Article  PubMed  Google Scholar 

  41. Winter MM, Scherptong RWC, Kumar S et al (2010) Ventricular response to stress predicts outcome in adult patients with a systemic right ventricle. Am Heart J 160:870–876

    Article  PubMed  Google Scholar 

  42. Jellis C, Martin J, Narula J et al (2010) Assessment of nonischemic myocardial fibrosis. J Am Coll Cardiol 56:89–97

    Article  CAS  PubMed  Google Scholar 

  43. Messroghli DR, Radjenovic A, Kozerke S et al (2004) Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 52:141–146

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem A. Helbing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helbing, W.A., Ouhlous, M. Cardiac magnetic resonance imaging in children. Pediatr Radiol 45, 20–26 (2015). https://doi.org/10.1007/s00247-014-3175-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-014-3175-x

Keywords

Navigation