Skip to main content

Advertisement

Log in

Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications

  • Minisymposium
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Magnetic resonance spectroscopy (MRS) offers a unique, noninvasive approach to assess pediatric neurological abnormalities at microscopic levels by quantifying cellular metabolites. The most widely available MRS method, proton (1H; hydrogen) spectroscopy, is FDA approved for general use and can be ordered by clinicians for pediatric neuroimaging studies if indicated. There are a multitude of both acquisition and post-processing methods that can be used in the implementation of MR spectroscopy. MRS in pediatric neuroimaging is challenging to interpret because of dramatic normal developmental changes that occur in metabolites, particularly in the first year of life. Still, MRS has been proven to provide additional clinically relevant information for several pediatric neurological disease processes such as brain tumors, infectious processes, white matter disorders, and neonatal injury. MRS can also be used as a powerful quantitative research tool. In this article, specific research applications using MRS will be demonstrated in relation to neonatal brain injury and pediatric brain tumor imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Baslow MH (2000) Functions of N-acetyl-L-aspartate and N-acetyl-L-aspartylglutamate in the vertebrate brain: role in glial cell-specific signaling. J Neurochem 75:453–459

    CAS  PubMed  Google Scholar 

  2. Tallan HH (1957) Studies on the distribution of N-acetyl-L-aspartic acid in brain. J Biol Chem 224:41–45

    CAS  PubMed  Google Scholar 

  3. Kreis R, Ernst T, Ross BD (1993) Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy. Magn Reson Med 30:424–437

    CAS  PubMed  Google Scholar 

  4. Bluml S, Seymour KJ, Ross BD (1999) Developmental changes in choline- and ethanolamine-containing compounds measured with proton-decoupled (31)P MRS in in vivo human brain. Magn Reson Med 42:643–654

    CAS  PubMed  Google Scholar 

  5. Lien YH, Shapiro JI, Chan L (1990) Effects of hypernatremia on organic brain osmoles. J Clin Invest 85:1427–1435

    CAS  PubMed  Google Scholar 

  6. Pfefferbaum A, Adalsteinsson E, Spielman D et al (1999) In vivo spectroscopic quantification of the N-acetyl moiety, creatine, and choline from large volumes of brain gray and white matter: effects of normal aging. Magn Reson Med 41:276–284

    CAS  PubMed  Google Scholar 

  7. Videen JS (1995) Human cerebral osmolytes during chronic hyponatremia. A proton magnetic resonance spectroscopy study. J Clin Invest 95:788–793

    CAS  PubMed  Google Scholar 

  8. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679

    CAS  PubMed  Google Scholar 

  9. Daikhin Y, Yudkoff M (2000) Compartmentation of brain glutamate metabolism in neurons and glia. J Nutr 130:1026S–1031S

    CAS  PubMed  Google Scholar 

  10. Erecinska M, Silver IA (1990) Metabolism and role of glutamate in mammalian brain. Prog Neurobiol 35:245–296

    CAS  PubMed  Google Scholar 

  11. Kreis R (1992) Metabolic disorders of the brain in chronic hepatic encephalopathy detected with H-1 MR spectroscopy. Radiology 182:19–27

    CAS  PubMed  Google Scholar 

  12. Condon B, Oluoch-Olunya D, Hadley D et al (1998) Early 1H magnetic resonance spectroscopy of acute head injury: four cases. J Neurotrauma 115:563–571

    Google Scholar 

  13. Haseler LJ, Arcinue E, Danielsen ER et al (1997) Evidence from proton magnetic resonance spectroscopy for a metabolic cascade of neuronal damage in shaken baby syndrome. Pediatrics 99:4–14

    CAS  PubMed  Google Scholar 

  14. Holshouser BA, Ashwal S, Luh GY et al (1997) Proton MR spectroscopy after acute central nervous system injury: outcome prediction in neonates, infants, and children. Radiology 202:487–496

    CAS  PubMed  Google Scholar 

  15. Holshouser BA, Ashwal S, Shu S et al (2000) Proton MR spectroscopy in children with acute brain injury: comparison of short and long echo time acquisitions. J Magn Reson Imaging 11:9–19

    CAS  PubMed  Google Scholar 

  16. Ross BD, Ernst T, Kreis R et al (1998) 1H MRS in acute traumatic brain injury. J Magn Reson Imaging 8:829–840

    CAS  PubMed  Google Scholar 

  17. Flint AC, Liu X, Kriegstein AR (1998) Nonsynaptic glycine receptor activation during early neocortical development. Neuron 20:43–53

    CAS  PubMed  Google Scholar 

  18. Kreis R, Hofmann L, Kuhlmann B et al (2002) Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 48:949–958

    CAS  PubMed  Google Scholar 

  19. Kovanlikaya A, Panigrahy A, Krieger MD et al (2005) Untreated pediatric primitive neuroectodermal tumor in vivo: quantitation of taurine with MR spectroscopy. Radiology 236:1020–1025

    PubMed  Google Scholar 

  20. Moreno-Torres A, Martinez-Perez I, Baquero M et al (2004) Taurine detection by proton magnetic resonance spectroscopy in medulloblastoma: contribution to noninvasive differential diagnosis with cerebellar astrocytomas. Neurosurgery 55:824–829

    PubMed  Google Scholar 

  21. Gill SS, Thomas DG, Van Bruggen N et al (1990) Proton MR spectroscopy of intracranial tumours: in vivo and in vitro studies. J Comput Assist Tomogr 14:497–504

    CAS  PubMed  Google Scholar 

  22. Howe FA, Barton SJ, Cudlip SA et al (2003) Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 49:223–232

    CAS  PubMed  Google Scholar 

  23. Panigrahy A, Krieger M, Gonzalez-Gomez I et al (2006) Quantitative short echo time 1H magnetic resonance spectroscopy of untreated pediatric brain tumors: pre-operative diagnosis and characterization. AJNR 27:560–572

    CAS  PubMed  Google Scholar 

  24. Seymour KJ, Bluml S, Sutherling J et al (1999) Identification of cerebral acetone by 1H-MRS in patients with epilepsy controlled by ketogenic diet. MAGMA 8:33–42

    CAS  PubMed  Google Scholar 

  25. Bloch F (1946) Nuclear induction. Phys Rev 70:460

    CAS  Google Scholar 

  26. Purcell EM, Torrey HC, Pound RV (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69:37–38

    CAS  Google Scholar 

  27. Bottomley PA (inventor) (1984) Selective volume method for performing localized NMR spectroscopy. USA patent US patent 4 480 228

  28. Bottomley PA (1987) Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci 508:333–348

    CAS  PubMed  Google Scholar 

  29. Frahm J, Merboldt K, Haenicke W (1987) Localized proton spectroscopy using stimulated echos. J Magn Reson 72:502–508

    CAS  Google Scholar 

  30. Ordidge RJ, Connelly AB, Lohman JA (1986) Image-selected in-vivo spectroscopy (ISIS). A new technique for spatially selective NMR spectroscopy. J Magn Reson 66:283–294

    CAS  Google Scholar 

  31. Danielsen ER, Henriksen O (1994) Absolute quantitative proton NMR spectroscopy based on the amplitude of the local water suppression pulse. Quantification of brain water and metabolites. NMR Biomed 7:311–318

    CAS  PubMed  Google Scholar 

  32. Kreis R (1997) Quantitative localized 1H MR spectroscopy for clinical use. Prog NMR Spectroscopy 31:155–195

    CAS  Google Scholar 

  33. Penrice J, Cady EB, Lorek A et al (1996) Proton magnetic resonance spectroscopy of the brain in normal and term infants and early changes after perinatal hypoxia-ischemia. Pediatr Res 40:6–14

    CAS  PubMed  Google Scholar 

  34. Hanrahan JD, Sargentoni J, Azzopardi D et al (1996) Cerebral metabolism within 18 h of birth asphyxia: a proton magnetic resonance spectroscopy study. Pediatr Res 39:584–590

    CAS  PubMed  Google Scholar 

  35. Leth H, Toft PB, Peitersen B et al (1996) Use of brain lactate levels to predict outcome after perinatal asphyxia. Acta Paediatr 85:859–864

    CAS  PubMed  Google Scholar 

  36. Groenendaal F, Veenhoven RH, van der Grond J et al (1994) Cerebral lactate and N-acetyl-aspertate/choline ratios in asphyxiated full term neonates demonstrated in-vivo using proton magnetic resonance spectroscopy. Pediatr Res 35:148–151

    CAS  PubMed  Google Scholar 

  37. Huppi PS, Posse S, Lazeyras F et al (1991) Magnetic resonance in preterm and term newborns: H-1 spectroscopy in developing brain. Pediatr Res 30:574–578

    CAS  PubMed  Google Scholar 

  38. Cheong JL, Cady EB, Penrice J et al (2006) Proton MR spectroscopy in neonates with perinatal cerebral hypoxic-ischemic injury: metabolite peak-area ratios, relaxation times, and absolute concentrations. AJNR 27:1546–1554

    CAS  PubMed  Google Scholar 

  39. Moorcraft J, Bolas NM, Ives NK et al (1991) Spatially localized magnetic resonance spectroscopy of the brains of normal and asphyxiated newborns. Pediatrics 87:273–282

    CAS  PubMed  Google Scholar 

  40. Peden CJ, Cowan FM, Bryant DJ et al (1990) Proton MR spectroscopy of the brain in infants. J Comput Assist Tomogr 14:886–894

    CAS  PubMed  Google Scholar 

  41. Barkovich AJ, Baranski K, Vigneron DB et al (1999) Proton MR spectroscopy for the evaluation of asphyxiated term neonates. AJNR 20:1399–1405

    CAS  PubMed  Google Scholar 

  42. Vigneron DB, Barkovich AJ, Noworolski SM et al (2001) Three-dimensional proton MR spectroscopic imaging of premature and term neonates. AJNR 22:1424–1433

    CAS  PubMed  Google Scholar 

  43. Shanmugalingam S, Thorton JS, Iwata O et al (2006) Comparative prognostic utilities of early quatitative magnetic resonance imaging spin-spin relaxaometry and proton magnetic resonance spectroscopy in neonatal encephalopathy. Pediatrics 118:1467–1477

    PubMed  Google Scholar 

  44. Amess PN, Penrice J, Wylezinska M et al (1999) Early brain proton magnetic resonance spectroscopy and neonatal neurology related to neurodevelopmental outcome at 1 year in term infants after presumed hypoxic-ischaemic brain injury. Dev Med Child Neurol 41:436–445

    CAS  PubMed  Google Scholar 

  45. Robertson NJ, Cox IJ, Cowan FM et al (1999) Cerebral intracellular lactic alkalosis persisting months after neonatal encephalopathy measured by magnetic resonance spectroscopy. Pediatr Res 46:287–296

    CAS  PubMed  Google Scholar 

  46. Roelants-Van Rijn AM, van der Grond J, de Vries LS et al (2001) Value of (1) H-MRS using different echo times in neonates with cerebral hypoxia-ischemia. Pediatr Res 49:356–362

    CAS  PubMed  Google Scholar 

  47. L’Abee C, de Vries LS, van der Grond J et al (2005) Early diffusion-weighted MRI and 1H-Magnetic Resonance Spectroscopy in asphyxiated full-term neonates. Biol Neonate 88:306–312

    PubMed  Google Scholar 

  48. Robertson NJ, Lewis RH, Cowan FM et al (2001) Early increases in brain myo-inositol measured by proton magnetic resonance spectroscopy in term infants with neonatal encephalopathy. Pediatr Res 50:692–700

    CAS  PubMed  Google Scholar 

  49. Brissaud O, Chateil JF, Bordessoules M et al (2005) Chemical shift imaging and localized magnetic resonance spectroscopy in full term asphyxiated neonates. Pediatr Radiol 35:998–1005

    PubMed  Google Scholar 

  50. Meyer-Witte S, Brissaud O, Brun M et al (2008) Prognostic value of MR in term neonates with neonatal hypoxic-ischemic encephalopathy: MRI score and spectroscopy. About 26 cases. Arch Pediatr 15:9–23

    CAS  PubMed  Google Scholar 

  51. Barkovich AJ, Miller SP, Bartha A et al (2006) MR imaging, MR spectroscopy, and diffusion tensor imaging of sequential studies in neonates with encephalopathy. AJNR 27:533–547

    CAS  PubMed  Google Scholar 

  52. Cecil KM, Kos RS (2006) Magnetic resonance spectroscopy and metabolic imaging in white matter diseases and pediatric disorders. Top Magn Reson Imaging 17:275–293

    PubMed  Google Scholar 

  53. Kinnala A, Rikalainen H, Lapinleimu H et al (1999) Cerebral magnetic resonance imaging and ultrasonography findings after neonatal hypoglycemia. Pediatrics 103:724–729

    CAS  PubMed  Google Scholar 

  54. Barkovich AJ (2005) Toxic and metabolic brain disorders. In: Barkovich AJ (ed) Pediatric neuroimaging, 4th edn. Lippincott Williams & Wilkins, Philadelphia, pp 76–189

    Google Scholar 

  55. Cecil K (2006) MR spectroscopy of metabolic disorders. In: Castillo M, Mukherji SK (eds) Neuroimaging clinics of North America, volume 16, number 1. Saunders, Philadelphia, pp 87–116

    Google Scholar 

  56. van der Knaap MS, Valk J (1995) Magnetic resonance of myelin, myelination and myelin disorders, 2nd edn. Springer, Berlin

    Google Scholar 

  57. Enns GM, Barkovich AJ, Rosenblatt DS et al (1999) Progressive neurological deterioration and MRI changes in cblC methylmalonic academia treated with hydroxocoblamin. J Inherit Metab Dis 22:599–607

    CAS  PubMed  Google Scholar 

  58. Jan W, Zimmerman RA, Wang ZJ et al (2003) MR diffusion imaging and MR spectroscopy of maple syrup urine disease during acute metabolic decompensation. Neuroradiology 45:393–399

    PubMed  Google Scholar 

  59. Cavalleri F, Bernardi A, Burlina A et al (2002) Diffusion-weighted MRI of maple syrup urine disease encephalopathy. Neuroradiology 44:499–502

    CAS  PubMed  Google Scholar 

  60. Takanashi J, Barkovich A, Cheng S et al (2003) Brain MR imaging in acute hyperammonemic encephalopathy arising from late-onset ornithine transcarbamylase deficiency. AJNR 24:390–393

    PubMed  Google Scholar 

  61. Choi C-G, Yoo HW (2001) Localized proton MR spectroscopy in infants with urea cycle defect. AJNR 22:834–837

    CAS  PubMed  Google Scholar 

  62. Bianchi MC, Tosetti M, Battini R et al (2003) Proton MR spectroscopy of mitochondrial diseases: analysis of brain metabolic abnormalities and their possible diagnostic relevance. AJNR 24:1958–1966

    PubMed  Google Scholar 

  63. Cross JH, Connelly A, Gadian DG et al (1994) Clinical diversity of pyruvate dehydrogenase deficiency. Pediatr Neurol 10:276–283

    CAS  PubMed  Google Scholar 

  64. Zand DJ, Simon EM, Pulitzer SB et al (2003) In vivo pyruvate detected by MR spectroscopy in neonatal pyruvate dehydrogease deficiency. AJNR 24:1471–1474

    PubMed  Google Scholar 

  65. Madhavarao CN, Moffett JR, Moore RA et al (2004) Immunohistochemical localization of aspatoacylase in the rat central nervous system. J Comp Neurol 472:318–329

    CAS  PubMed  Google Scholar 

  66. Bizzi A, Castelli G, Bugiani M (2008) Classification of childhood white matter disorders using proton MR spectroscopic imaging. AJNR 29:1270–1275

    CAS  PubMed  Google Scholar 

  67. Kuker W, Ruff J, Gaertner S et al (2004) Modern MRI tools for the characterization of acute demylinating lesions: value of chemical shift and diffusion-weighted imaging. Neuroradiology 46:421–426

    CAS  PubMed  Google Scholar 

  68. Mader I, Wolff M, Nagele T et al (2005) MRI and proton MR spectroscopy in acute disseminated encephalomyelitis. Childs Nerv Syst 21:566–572

    CAS  PubMed  Google Scholar 

  69. Bizzi A, Ulug AM, Crawford TO et al (2001) Quantitative proton MR spectroscopic imaging in acute disseminated encephalomyelitis. AJNR 22:1125–1130

    CAS  PubMed  Google Scholar 

  70. Gabis LV, Panasci DJ, Andriola MR et al (2001) Acute disseminated encephalomyelitis: an MRI/MRS longitudinal study. Pediatr Neurol 30:324–329

    Google Scholar 

  71. Wilke M, Eidenschink A, Muller-Weihrich S et al (2001) MR diffusion imaging and 1H spectroscopy in a child with medulloblastoma. A case report. Acta Radiol 42:39–42

    CAS  PubMed  Google Scholar 

  72. Tong Z, Yamaki T, Harada K et al (2004) In vivo quantification of the metabolites in normal brain and brain tumors by proton MR spectroscopy using water as an internal standard. Magn Reson Imaging 22:1017–1024

    CAS  PubMed  Google Scholar 

  73. Wang Z, Sutton LN, Cnaan A et al (1995) Proton MR spectroscopy of pediatric cerebellar tumors. AJNR 16:1821–1833

    CAS  PubMed  Google Scholar 

  74. Pan E, Prados M (2004) Brainstem gliomas. In: Gupta N, Haas-Kogen D, Banerjee A (eds) Pediatric CNS tumors. Springer-Verlag, Berlin, pp 49–61

    Google Scholar 

  75. Albright AL, Packer RJ, Zimmerman R et al (1993) Magnetic resonance scans should replace biopsies for the diagnosis of diffuse brain stem gliomas: a report from the Children’s Cancer Group. Neurosurgery 33:1026–1029, discussion 1029–1030

    CAS  PubMed  Google Scholar 

  76. Jallo GI, Biser-Rohrbaugh A, Freed D (2004) Brainstem gliomas. Childs Nerv Syst 20:143–153

    PubMed  Google Scholar 

  77. Barkovich AJ, Krischer J, Kun LE et al (1990) Brain stem gliomas: a classification system based on magnetic resonance imaging. Pediatr Neurosurg 16:73–83

    PubMed  Google Scholar 

  78. Seymour ZA, Panigrahy A, Finlay JL et al (2008) Citrate in pediatric CNS tumors? AJNR 29:1006–1011

    CAS  PubMed  Google Scholar 

  79. Panigrahy A, Nelson MD Jr, Finlay JL et al (2008) Metabolism of diffuse intrinsic brainstem gliomas in children. Neuro Oncol 10:32–44

    CAS  PubMed  Google Scholar 

  80. Broniscer A, Baker SJ, West AN et al (2007) Clinical and molecular characteristics of malignant transformation of low-grade glioma in children. J Clin Oncol 25:682–689

    CAS  PubMed  Google Scholar 

  81. Castillo M, Smith JK, Kwock L (2000) Correlation of myo-inositol levels and grading of cerebral astrocytomas. AJNR 21:1645–1649

    CAS  PubMed  Google Scholar 

  82. Tzika AA, Vigneron DB, Dunn RS et al (1996) Intracranial tumors in children: small single-voxel proton MR spectroscopy using short- and long-echo sequences. Neuroradiology 38:254–263

    CAS  PubMed  Google Scholar 

  83. Negendank WG (1992) Studies of human tumors by MRS: a review. NMR Biomed 5:303–324

    CAS  PubMed  Google Scholar 

  84. Negendank WG, Sauter R, Brown TR et al (1996) Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study. J Neurosurg 84:449–458

    CAS  PubMed  Google Scholar 

  85. Nelson SJ, Vigneron DB, Dillon WP (1999) Serial evaluation of patients with brain tumors using volume MRI and 3D 1H MRSI. NMR Biomed 12:123–138

    CAS  PubMed  Google Scholar 

  86. Sijens PE, Knopp MV, Brunetti A et al (1995) 1H MR spectroscopy in patients with metastatic brain tumors: a multicenter trial. Magn Reson Med 33:818–826

    CAS  PubMed  Google Scholar 

  87. Taylor JS, Ogg RJ, Langston JW (1998) Proton MR spectroscopy of pediatric brain tumors. Neuroimaging Clin N Am 8:753–779

    CAS  PubMed  Google Scholar 

  88. Taylor JS, Langston JW, Reddick WE et al (1996) Clinical value of proton magnetic resonance spectroscopy for differentiating recurrent or residual brain tumor from delayed cerebral necrosis. Int J Radiat Oncol Biol Phys 36:1251–1261

    CAS  PubMed  Google Scholar 

  89. Shimizu H, Kumabe T, Tominaga T et al (1996) Noninvasive evaluation of malignancy of brain tumors with proton MR spectroscopy. AJNR 17:737–747

    CAS  PubMed  Google Scholar 

  90. Ball WS Jr, Holland SK (2001) Perfusion imaging in the pediatric patient. Magn Reson Imaging Clin N Am 9:207–230, ix

    PubMed  Google Scholar 

  91. Chang YW, Yoon HK, Shin HJ et al (2003) MR imaging of glioblastoma in children: usefulness of diffusion/perfusion-weighted MRI and MR spectroscopy. Pediatr Radiol 33:836–842

    PubMed  Google Scholar 

  92. Tzika AA, Astrakas LG, Zarifi MK et al (2003) Multiparametric MR assessment of pediatric brain tumors. Neuroradiology 45:1–10

    CAS  PubMed  Google Scholar 

  93. Yoshimura J, Onda K, Tanaka R et al (2003) Clinicopathological study of diffuse type brainstem gliomas: analysis of 40 autopsy cases. Neurol Med Chir (Tokyo) 43:375–382, discussion 382

    Google Scholar 

  94. Thakur SB, Karimi S, Dunkel IJ et al (2006) Longitudinal MR spectroscopic imaging of pediatric diffuse pontine tumors to assess tumor aggression and progression. AJNR 27:806–809

    CAS  PubMed  Google Scholar 

  95. Laprie A, Pirzkall A, Haas-Kogan DA et al (2005) Longitudinal multivoxel MR spectroscopy study of pediatric diffuse brainstem gliomas treated with radiotherapy. Int J Radiat Oncol Biol Phys 62:20–31

    PubMed  Google Scholar 

  96. Lazareff JA, Gupta RK, Alger J (1999) Variation of post-treatment H-MRSI choline intensity in pediatric gliomas. J Neurooncol 41:291–298

    CAS  PubMed  Google Scholar 

  97. Warren KE, Frank JA, Black JL et al (2000) Proton magnetic resonance spectroscopic imaging in children with recurrent primary brain tumors. J Clin Oncol 18:1020–1026

    CAS  PubMed  Google Scholar 

  98. Tzika AA, Astrakas LG, Zarifi MK et al (2004) Spectroscopic and perfusion magnetic resonance imaging predictors of progression in pediatric brain tumors. Cancer 100:1246–1256

    PubMed  Google Scholar 

  99. Wald LL, Nelson SJ, Day MR et al (1997) Serial proton magnetic resonance spectroscopy imaging of glioblastoma multiforme after brachytherapy. J Neurosurg 87:525–534

    CAS  PubMed  Google Scholar 

  100. Preul MC, Leblanc R, Caramanos Z et al (1998) Magnetic resonance spectroscopy guided brain tumor resection: differentiation between recurrent glioma and radiation change in two diagnostically difficult cases. Can J Neurol Sci 25:13–22

    CAS  PubMed  Google Scholar 

  101. Isobe T, Matsumura A, Anno I et al (2003) Changes in 1H-MRS in glioma patients before and after irradiation: the significance of quantitative analysis of choline-containing compounds. No Shinkei Geka 31:167–172

    PubMed  Google Scholar 

  102. Schlemmer HP, Bachert P, Herfarth KK et al (2001) Proton MR spectroscopic evaluation of suspicious brain lesions after stereotactic radiotherapy. AJNR 22:1316–1324

    CAS  PubMed  Google Scholar 

  103. Panigrahy A, Krieger M, Gonzalez-Gomez I et al (2007) Differentiation of encephalitis from astrocytomas in pediatric patients by quantitative in vivo MR spectroscopy. Abstract. ASNR Chicago

  104. Shiroishi MS, Panigrahy A, Moore KR et al (2008) Combined MR imaging and MR spectroscopy provides more accurate pretherapeutic diagnoses of pediatric brain tumors than MR imaging alone. Abstract. ASNR New Orleans

  105. Arle JE, Morriss C, Wang ZJ et al (1997) Prediction of posterior fossa tumor type in children by means of magnetic resonance image properties, spectroscopy, and neural networks. J Neurosurg 86:755–761

    CAS  PubMed  Google Scholar 

  106. Brooks WM, Friedman SD, Gasparovic C (2001) Magnetic resonance spectroscopy in traumatic brain injury. J Head Trauma Rehabil 16:149–164

    CAS  PubMed  Google Scholar 

  107. Govindaraju V, Gauger GE, Manley GT et al (2004) Volumetric proton spectroscopic imaging of mild traumatic brain injury. AJNR 25:730–737

    PubMed  Google Scholar 

  108. Macmillan CS, Wild JM, Wardlaw JM et al (2002) Traumatic brain injury and subarachnoid hemorrhage: in vivo occult pathology demonstrated by magnetic resonance spectroscopy may not be “ischaemic.” A primary study and review of the literature. Acta Neurochir (Wien) 144:853–862, discussion 862

    CAS  Google Scholar 

  109. Jope RS, Jenden DJ (1979) Choline and phospholipid metabolism and the synthesis of acetylcholine in rat brain. J Neurosci Res 4:69–82

    CAS  PubMed  Google Scholar 

  110. Miller BL (1991) A review of chemical issues in 1H NMR spectroscopy: N-acetyl-L-aspartate, creatine and choline. NMR Biomed 4:47–52

    CAS  PubMed  Google Scholar 

  111. Badar-Goffer RS, Ben-Yoseph O, Bachelard HS et al (1992) Neuronal-glial metabolism under depolarizing conditions. A 13C-n.m.r. study. Biochem J 282(Pt 1):225–230

    CAS  PubMed  Google Scholar 

  112. Brand A, Richter-Landsberg C, Leibfritz D (1993) Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci 15:289–298

    CAS  PubMed  Google Scholar 

  113. Brooks WM, Stidley CA, Petropoulos H et al (2000) Metabolic and cognitive response to human traumatic brain injury: a quantitative proton magnetic resonance study. J Neurotrauma 17:629–640

    CAS  PubMed  Google Scholar 

  114. Friedman SD, Brooks WM, Jung RE et al (1999) Quantitative proton MRS predicts outcome after traumatic brain injury. Neurology 52:1384–1391

    CAS  PubMed  Google Scholar 

  115. Garnett MR, Blamire AM, Corkill RG et al (2000) Early proton magnetic resonance spectroscopy in normal-appearing brain correlates with outcome in patients following traumatic brain injury. Brain 123(Pt 10):2046–2054

    PubMed  Google Scholar 

  116. Ricci R, Barbarella G, Musi P et al (1997) Localised proton MR spectroscopy of brain metabolism changes in vegetative patients. Neuroradiology 39:313–319

    CAS  PubMed  Google Scholar 

  117. Hunter JV, Thorton RJ, Wang ZJ et al (2005) Late proton MR spectroscopy in children after traumatic brain injury: correlation with cognitive outcomes. AJNR 26:482–488

    PubMed  Google Scholar 

  118. Foerster BR, Coklin LS, Petrou M et al (2009) Minimal hepatic encephalopathy in children: evaluation with proton MR spectroscopy. AJNR 30:1610–1613

    Google Scholar 

  119. Woodward LJ, Anderson PJ, Austin NC et al (2006) Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med 355:685–694

    CAS  PubMed  Google Scholar 

  120. Miller SP, Ferriero DM, Leonard C et al (2005) Early brain injury in premature newborns detected with magnetic resonance imaging is associated with adverse early neurodevelopmental outcome. J Pediatr 147:609–616

    PubMed  Google Scholar 

  121. Arzoumanian Y, Mirmiran M, Barnes PD et al (2003) Diffusion tensor brain imaging findings at term-equivalent age may predict neurologic abnormalities in low birth weight preterm infants. AJNR 24:1646–1653

    CAS  PubMed  Google Scholar 

  122. Miller SP, Vigneron DB, Henry RG et al (2002) Serial quantitative diffusion tensor MRI of the premature brain: development in newborns with and without injury. J Magn Reson Imaging 16:621–632

    PubMed  Google Scholar 

  123. Inder T, Huppi PS, Zientara GP et al (1999) Early detection of periventricular leukomalacia by diffusion-weighted magnetic resonance imaging techniques. J Pediatr 134:631–634

    CAS  PubMed  Google Scholar 

  124. Inder TE, Wells SJ, Mogridge NB et al (2003) Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study. J Pediatr 143:171–179

    PubMed  Google Scholar 

  125. Inder TE, Warfield SK, Wang H et al (2005) Abnormal cerebral structure is present at term in premature infants. Pediatrics 115:286–294

    PubMed  Google Scholar 

  126. Huppi PS, Maier SE, Peled S et al (1998) Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 44:584–590

    CAS  PubMed  Google Scholar 

  127. Huppi PS, Murphy B, Maier SE et al (2001) Microstructural brain development after perinatal cerebral white matter injury assessed by diffusion tensor magnetic resonance imaging. Pediatrics 107:455–460

    CAS  PubMed  Google Scholar 

  128. Ment LR, Peterson BS, Vohr B et al (2006) Cortical recruitment patterns in children born prematurely compared with control subjects during a passive listening functional magnetic resonance imaging task. J Pediatr 149:490–498

    PubMed  Google Scholar 

  129. Boardman JP, Counsell SJ, Rueckert D et al (2006) Abnormal deep grey matter development following preterm birth detected using deformation-based morphometry. Neuroimage 32:70–78

    PubMed  Google Scholar 

  130. Srinivasan L, Dutta R, Counsell SJ et al (2007) Quantification of deep gray matter in preterm infants at term-equivalent age using manual volumetry of 3-tesla magnetic resonance images. Pediatrics 119:759–765

    PubMed  Google Scholar 

  131. Peterson BS, Anderson AW, Ehrenkranz R et al (2003) Regional brain volumes and their later neurodevelopmental correlates in term and preterm infants. Pediatrics 111:939–948

    PubMed  Google Scholar 

  132. Srinivasan L (2006) Smaller cerebellar volumes in very preterm infants at term-equivalent age are associated with the presence of supratentorial lesions. AJNR 27:573–579

    CAS  PubMed  Google Scholar 

  133. Peterson BS, Vohr B, Staib LH et al (2000) Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA 284:1939–1947

    CAS  PubMed  Google Scholar 

  134. Counsell SJ, Allsop JM, Harrison MC et al (2003) Diffusion-weighted imaging of the brain in preterm infants with focal and diffuse white matter abnormality. Pediatrics 112:1–7

    PubMed  Google Scholar 

  135. Counsell SJ, Shen Y, Boardman JP et al (2006) Axial and radial diffusivity in preterm infants who have diffuse white matter changes on magnetic resonance imaging at term-equivalent age. Pediatrics 117:376–386

    PubMed  Google Scholar 

  136. Drobyshevsky A, Bregman J, Storey P (2007) Serial diffusion tensor imaging detects white matter changes that correlate with motor outcome in premature infants. Dev Neurosci 29:289–301

    CAS  PubMed  Google Scholar 

  137. Panigrahy A, Barnes PD, Robertson RL et al (2001) Volumetric brain differences in children with periventricular T2-signal hyperintensities: a grouping by gestational age at birth. AJR 177:695–702

    CAS  PubMed  Google Scholar 

  138. Panigrahy A, Barnes PD, Robertson RL et al (2005) Quantitative analysis of the corpus callosum in children with cerebral palsy and developmental delay: correlation with cerebral white matter volume. Pediatr Radiol 35:1199–1207

    PubMed  Google Scholar 

  139. Vigneron DB (2006) Magnetic resonance spectroscopic imaging of human brain development. In: Mukherjee P, Castillo M, Mukherji SK (eds) Advanced pediatric imaging. Neuroimaging clinics. Elsevier, Philadelphia, pp 75–116

    Google Scholar 

  140. Robertson NJ, Kuint J, Counsell SJ et al (2000) Characterization of cerebral white matter damage in preterm infant using 1H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Metab 20:1446–1456

    CAS  PubMed  Google Scholar 

  141. Roelants-van Rijn AM, van der Grond J, Stigter RH et al (2004) Cerebral structure and metabolism and long term outcome in small-for-gestational age preterm neonates. Pediatr Res 56:285–290

    PubMed  Google Scholar 

  142. Kantarci K, Jack CR J, Xu YC et al (2000) Regional metabolic patterns in mild cognitive impairment and Alzheimer’s disease: a 1H MRS study. Neurology 55:210–217

    CAS  PubMed  Google Scholar 

  143. Bruhn H, Frahm J, Merboldt KD et al (1992) Multiple sclerosis in children: cerebral metabolic alterations monitored by localized proton magnetic resonance spectroscopy in vivo. Ann Neurol 32:140–150

    CAS  PubMed  Google Scholar 

  144. Davie CA, Hawkins CP, Barker GJ et al (1994) Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain 117(Pt 1):49–58

    PubMed  Google Scholar 

  145. Hattingen E, Raab P, Franz K et al (2008) Myo-Inositol: a marker of reactive astrogliosis in glial tumors? NMR Biomed 21:233–241

    CAS  PubMed  Google Scholar 

  146. Broom KA, Anthony DC, Lowe JP et al (2007) MRI and LRS alterations in the preclinical phase of murine prion disease: association with neuropathological and behavioral changes. Neurobiol Dis 26:707–717

    CAS  PubMed  Google Scholar 

  147. Waldman AD, Cordery RJ, MacManus DG et al (2006) Regional brain metabolite abnormalities in inherited prion disease and asymptomatic gene carriers demonstrated in vivo by quantitative proton magnetic resonance spectroscopy. Neuroradiology 48:428–433

    CAS  PubMed  Google Scholar 

  148. Panigrahy A, Nelson MD, Bluml S (2008) Quantitative short echo proton MRS of perinatal white matter injury. Radiologic Society of North America Annual Meeting, Chicago, Illinois, November 30-December 5

  149. Jain RK, di Tomaso E, Duda DG et al (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8:610–622

    CAS  PubMed  Google Scholar 

  150. Panigrahy A, Finlay J, Dhall G et al (2008) Post-therapeutic metabolic changes in diffuse intrinsic brain stem glioma: initial experience. Neuro-Oncology, Abstracts from the thirteenth International Symposium on Pediatric Neuro-Oncology (ISPNO) 393

  151. Ananthnarayan S, Bahng J, Roring J et al (2008) Time course of imaging changes of GBM during extended bevacizumab treatment. J Neurooncol 88:339–347

    PubMed  Google Scholar 

  152. Rosol M, Harutyunyan I, Xu JY et al (2009) Metabolism of orthotopic mouse brain tumor models. Mol Imaging 8:199–208

    Google Scholar 

Download references

Acknowledgements

The authors thank Mike Rosol, Arabhi Nagasunder and Julia Castro. Grant support provided by NIH NINDS NS063371-01A1, Thrasher Research Fund, Ian’s Friends Foundation, Rudi Schulte Research Institute, Children’s Oncology Group, and Childrens Hospital Los Angeles GCRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Panigrahy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panigrahy, A., Nelson, M.D. & Blüml, S. Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications. Pediatr Radiol 40, 3–30 (2010). https://doi.org/10.1007/s00247-009-1450-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-009-1450-z

Keywords

Navigation