Skip to main content

Proton Magnetic Resonance Spectroscopy: Applications in Neonatal Medicine

  • Chapter
  • First Online:
MR Spectroscopy of Pediatric Brain Disorders

Abstract

Although cranial ultrasonography and computed tomography are particularly useful in the assessment of newborns with neurological signs and symptoms, magnetic resonance imaging has become a critical component in this evaluation to identify the cause of a newborn’s symptoms, to assess the severity of disease and to determine prognosis. Several recent reviews describe aspects of conventional magnetic resonance imaging modalities used in newborns for these purposes. This chapter reviews aspects of magnetic resonance spectroscopy and is focused on the clinical utility of spectroscopy in the newborn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Panigrahy A, Nelson Jr MD, Bluml S. Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications. Pediatr Radiol. 2010;40(1):3–30.

    Article  PubMed  Google Scholar 

  2. Limperopoulos C. Introduction: Imaging the developing brain. Semin Perinatol. 2010;34(1):1–2.

    Article  PubMed  Google Scholar 

  3. Girard N, Confort-Gouny S, Schneider J, Barberet M, Chapon F, Viola A, et al. MR imaging of brain maturation. J Neuroradiol. 2007;34(5):290–310.

    Article  PubMed  CAS  Google Scholar 

  4. Gressens P, Luton D. Fetal MRI: obstetrical and neurological perspectives. Pediatr Radiol. 2004;34(9):682–4.

    Article  PubMed  Google Scholar 

  5. Chau V, Poskitt KJ, McFadden DE, Bowen-Roberts T, Synnes A, Brant R, et al. Effect of chorioamnionitis on brain development and injury in premature newborns. Ann Neurol. 2009;66(2):155–64.

    Article  PubMed  Google Scholar 

  6. Lawrence RK, Inder TE. Anatomic changes and imaging in assessing brain injury in the term infant. Clin Perinatol. 2008;35(4):679–93.

    Article  PubMed  Google Scholar 

  7. Panigrahy A, Bluml S. Advances in magnetic resonance neuroimaging techniques in the evaluation of neonatal encephalopathy. Top Magn Reson Imaging. 2007;18(1):3–29.

    Article  PubMed  Google Scholar 

  8. Barkovich AJ. MR imaging of the neonatal brain. Neuroimaging Clin N Am. 2006;16(1):117–35. viii–ix.

    Article  PubMed  CAS  Google Scholar 

  9. Huppi PS. Advances in postnatal neuroimaging: relevance to pathogenesis and treatment of brain injury. Clin Perinatol. 2002;29(4):827–56.

    Article  PubMed  Google Scholar 

  10. Cady EB. Magnetic resonance spectroscopy in neonatal hypoxic-ischaemic insults. Childs Nerv Syst. 2001;17(3):145–9.

    Article  PubMed  CAS  Google Scholar 

  11. Xu D, Vigneron D. Magnetic resonance spectroscopy imaging of the newborn brain—a technical review. Semin Perinatol. 2010;34(1):20–7. PMCID: 2842012.

    Article  PubMed  Google Scholar 

  12. Pugash D, Krssak M, Kulemann V, Prayer D. Magnetic resonance spectroscopy of the fetal brain. Prenat Diagn. 2009;29(4):434–41.

    Article  PubMed  Google Scholar 

  13. Vigneron DB. Magnetic resonance spectroscopic imaging of human brain development. Neuroimaging Clin N Am. 2006;16(1):75–85. viii.

    Article  PubMed  Google Scholar 

  14. Dilenge ME, Majnemer A, Shevell MI. Long-term developmental outcome of asphyxiated term neonates. J Child Neurol. 2001;16(11):781–92.

    Article  PubMed  CAS  Google Scholar 

  15. Sreenan C, Bhargava R, Robertson CM. Cerebral infarction in the term newborn: clinical presentation and long-term outcome. J Pediatr. 2000;137(3):351–5.

    Article  PubMed  CAS  Google Scholar 

  16. Koelfen W, Freund M, Konig S, Varnholt V, Rohr H, Schultze C. Results of parenchymal and angiographic magnetic resonance imaging and neuropsychological testing of children after stroke as neonates. Eur J Pediatr. 1993;152(12):1030–5.

    Article  PubMed  CAS  Google Scholar 

  17. Mercuri E, Anker S, Guzzetta A, Barnett A, Haataja L, Rutherford M, et al. Neonatal cerebral infarction and visual function at school age. Arch Dis Child Fetal Neonatal Ed. 2003;88(6):F487–91. PMCID: 1763223.

    Article  PubMed  CAS  Google Scholar 

  18. de Vries LS, Cowan FM. Evolving understanding of hypoxic-ischemic encephalopathy in the term infant. Semin Pediatr Neurol. 2009;16(4):216–25.

    Article  PubMed  Google Scholar 

  19. Gonzalez FF, Ferriero DM. Therapeutics for neonatal brain injury. Pharmacol Ther. 2008;120(1):43–53.

    Article  PubMed  CAS  Google Scholar 

  20. Scafidi J, Gallo V. New concepts in perinatal hypoxia ischemia encephalopathy. Curr Neurol Neurosci Rep. 2008;8(2):130–8.

    Article  PubMed  CAS  Google Scholar 

  21. Shevell MI, Majnemer A, Miller SP. Neonatal neurologic prognostication: the asphyxiated term newborn. Pediatr Neurol. 1999;21(5):776–84.

    Article  PubMed  CAS  Google Scholar 

  22. Biagioni E, Mercuri E, Rutherford M, Cowan F, Azzopardi D, Frisone MF, et al. Combined use of electroencephalogram and magnetic resonance imaging in full-term neonates with acute encephalopathy. Pediatrics. 2001;107(3):461–8.

    Article  PubMed  CAS  Google Scholar 

  23. Belet N, Belet U, Incesu L, Uysal S, Ozinal S, Keskin T, et al. Hypoxic-ischemic encephalopathy: correlation of serial MRI and outcome. Pediatr Neurol. 2004;31(4):267–74.

    Article  PubMed  Google Scholar 

  24. Rutherford M, Pennock J, Schwieso J, Cowan F, Dubowitz L. Hypoxic-ischaemic encephalopathy: early and late magnetic resonance imaging findings in relation to outcome. Arch Dis Child Fetal Neonatal Ed. 1996;75(3):145–51. PMCID: 1061190.

    Article  Google Scholar 

  25. Barnett A, Mercuri E, Rutherford M, Haataja L, Frisone MF, Henderson S, et al. Neurological and perceptual-motor outcome at 5–6 years of age in children with neonatal encephalopathy: relationship with neonatal brain MRI. Neuropediatrics. 2002;33(5):242–8.

    Article  PubMed  CAS  Google Scholar 

  26. Kuenzle C, Baenziger O, Martin E, Thun-Hohenstein L, Steinlin M, Good M, et al. Prognostic value of early MR imaging in term infants with severe perinatal asphyxia. Neuropediatrics. 1994;25(4):191–200.

    Article  PubMed  CAS  Google Scholar 

  27. Miller SP, Ramaswamy V, Michelson D, Barkovich AJ, Holshouser B, Wycliffe N, et al. Patterns of brain injury in term neonatal encephalopathy. J Pediatr. 2005;146(4):453–60.

    Article  PubMed  Google Scholar 

  28. Barkovich AJ, Hajnal BL, Vigneron D, Sola A, Partridge JC, Allen F, et al. Prediction of neuromotor outcome in perinatal asphyxia: evaluation of MR scoring systems. AJNR Am J Neuroradiol. 1998;19(1):143–9.

    PubMed  CAS  Google Scholar 

  29. Rutherford MA, Pennock JM, Counsell SJ, Mercuri E, Cowan FM, Dubowitz LM, et al. Abnormal magnetic resonance signal in the internal capsule predicts poor neurodevelopmental outcome in infants with hypoxic-ischemic encephalopathy. Pediatrics. 1998;102(2 Pt 1):323–8.

    Article  PubMed  CAS  Google Scholar 

  30. Mercuri E, Guzzetta A, Haataja L, Cowan F, Rutherford M, Counsell S, et al. Neonatal neurological examination in infants with hypoxic ischaemic encephalopathy: correlation with MRI findings. Neuropediatrics. 1999;30(2):83–9.

    Article  PubMed  CAS  Google Scholar 

  31. Govaert P, Matthys E, Zecic A, Roelens F, Oostra A, Vanzieleghem B. Perinatal cortical infarction within middle cerebral artery trunks. Arch Dis Child Fetal Neonatal Ed. 2008;82(1):59–63. PMCID: 1721024.

    Article  Google Scholar 

  32. De Vries LS, Van der Grond J, Van Haastert IC, Groenendaal F. Prediction of outcome in new-born infants with arterial ischaemic stroke using diffusion-weighted magnetic resonance imaging. Neuropediatrics. 2005;36(1):12–20.

    Article  PubMed  Google Scholar 

  33. de Vries LS, Groenendaal F, Eken P, van Haastert IC, Rademaker KJ, Meiners LC. Infarcts in the vascular distribution of the middle cerebral artery in preterm and fullterm infants. Neuropediatrics. 1997;28(2):88–96.

    Article  PubMed  Google Scholar 

  34. Golomb MR. The contribution of prothrombotic disorders to peri- and neonatal ischemic stroke. Semin Thromb Hemost. 2003;29(4):415–24.

    Article  PubMed  Google Scholar 

  35. Ramaswamy V, Miller SP, Barkovich AJ, Partridge JC, Ferriero DM. Perinatal stroke in term infants with neonatal encephalopathy. Neurology. 2004;62(11):2088–91.

    Article  PubMed  CAS  Google Scholar 

  36. Mercuri E, Cowan F, Gupte G, Manning R, Laffan M, Rutherford M, et al. Prothrombotic disorders and abnormal neurodevelopmental outcome in infants with neonatal cerebral infarction. Pediatrics. 2001;107(6):1400–4.

    Article  PubMed  CAS  Google Scholar 

  37. Cady EB. Metabolite concentrations and relaxation in perinatal cerebral hypoxic-ischemic injury. Neurochem Res. 1996;21(9):1043–52.

    Article  PubMed  CAS  Google Scholar 

  38. Groenendaal F, Veenhoven RH, van der Grond J, Jansen GH, Witkamp TD, de Vries LS. Cerebral lactate and N-acetyl-aspartate/choline ratios in asphyxiated full-term neonates demonstrated in vivo using proton magnetic resonance spectroscopy. Pediatr Res. 1994;35(2):148–51.

    Article  PubMed  CAS  Google Scholar 

  39. Shu SK, Ashwal S, Holshouser BA, Nystrom G, Hinshaw Jr DB. Prognostic value of 1 H-MRS in perinatal CNS insults. Pediatr Neurol. 1997;17(4):309–18.

    Article  PubMed  CAS  Google Scholar 

  40. Barkovich AJ, Baranski K, Vigneron D, Partridge JC, Hallam DK, Hajnal BL, et al. Proton MR spectroscopy for the evaluation of brain injury in asphyxiated, term neonates. AJNR Am J Neuroradiol. 1999;20(8):1399–405.

    PubMed  CAS  Google Scholar 

  41. Roelants-van Rijn AM, van der Grond J, de Vries LS, Groenendaal F. Cerebral proton magnetic resonance spectroscopy of neonates after extracorporeal membrane oxygenation. Acta Paediatr. 2001;90(11):1288–91.

    Article  PubMed  CAS  Google Scholar 

  42. Hanrahan JD, Sargentoni J, Azzopardi D, Manji K, Cowan FM, Rutherford MA, et al. Cerebral metabolism within 18 hours of birth asphyxia: a proton magnetic resonance spectroscopy study. Pediatr Res. 1996;39(4 Pt 1):584–90.

    Article  PubMed  CAS  Google Scholar 

  43. Peden CJ, Rutherford MA, Sargentoni J, Cox IJ, Bryant DJ, Dubowitz LM. Proton spectroscopy of the neonatal brain following hypoxic-ischaemic injury. Dev Med Child Neurol. 1993;35(6):502–10.

    Article  PubMed  CAS  Google Scholar 

  44. Cady EB, Amess P, Penrice J, Wylezinska M, Sams V, Wyatt JS. Early cerebral-metabolite quantification in perinatal hypoxic-ischaemic encephalopathy by proton and phosphorus magnetic resonance spectroscopy. Magn Reson Imaging. 1997;15(5):605–11.

    Article  PubMed  CAS  Google Scholar 

  45. Miller SP, Newton N, Ferriero DM, Partridge JC, Glidden DV, Barnwell A, et al. Predictors of 30-month outcome after perinatal depression: role of proton MRS and socioeconomic factors. Pediatr Res. 2002;52(1):71–7.

    Article  PubMed  Google Scholar 

  46. Holshouser BA, Ashwal S, Shu S, Hinshaw Jr DB. Proton MR spectroscopy in children with acute brain injury: comparison of short and long echo time acquisitions. J Magn Reson Imaging. 2000;11(1):9–19.

    Article  PubMed  CAS  Google Scholar 

  47. Roelants-Van Rijn AM, van der Grond J, de Vries LS, Groenendaal F. Value of (1)H-MRS using different echo times in neonates with cerebral hypoxia-ischemia. Pediatr Res. 2001;49(3):356–62.

    Article  PubMed  CAS  Google Scholar 

  48. Robertson NJ, Lewis RH, Cowan FM, Allsop JM, Counsell SJ, Edwards AD, et al. Early increases in brain myo-inositol measured by proton magnetic resonance spectroscopy in term infants with neonatal encephalopathy. Pediatr Res. 2001;50(6):692–700.

    Article  PubMed  CAS  Google Scholar 

  49. Fan G, Wu Z, Chen L, Guo Q, Ye B, Mao J. Hypoxia-ischemic encephalopathy in full-term neonate: correlation proton MR spectroscopy with MR imaging. Eur J Radiol. 2003;45(2):91–8.

    Article  PubMed  Google Scholar 

  50. Groenendaal F, Roelants-Van Rijn AM, van Der Grond J, Toet MC, de Vries LS. Glutamate in cerebral tissue of asphyxiated neonates during the first week of life demonstrated in vivo using proton magnetic resonance spectroscopy. Biol Neonate. 2001;79(3–4):254–7.

    PubMed  CAS  Google Scholar 

  51. Pu Y, Li QF, Zeng CM, Gao J, Qi J, Luo DX, et al. Increased detectability of alpha brain glutamate/glutamine in neonatal hypoxic-ischemic encephalopathy. AJNR Am J Neuroradiol. 2000;21(1):203–12.

    PubMed  CAS  Google Scholar 

  52. Zhu W, Zhong W, Qi J, Yin P, Wang C, Chang L. Proton magnetic resonance spectroscopy in neonates with hypoxic-ischemic injury and its prognostic value. Transl Res. 2008;152(5):225–32.

    Article  PubMed  CAS  Google Scholar 

  53. Kadri M, Shu S, Holshouser B, Deming D, Hopper A, Peverini R, et al. Proton magnetic resonance spectroscopy improves outcome prediction in perinatal CNS insults. J Perinatol. 2003;23(3):181–5.

    Article  PubMed  CAS  Google Scholar 

  54. Penrice J, Cady EB, Lorek A, Wylezinska M, Amess PN, Aldridge RF, et al. Proton magnetic resonance spectroscopy of the brain in normal preterm and term infants, and early changes after perinatal hypoxia-ischemia. Pediatr Res. 1996;40(1):6–14.

    Article  PubMed  CAS  Google Scholar 

  55. Shanmugalingam S, Thornton JS, Iwata O, Bainbridge A, O’Brien FE, Priest AN, et al. Comparative prognostic utilities of early quantitative magnetic resonance imaging spin-spin relaxometry and proton magnetic resonance spectroscopy in neonatal encephalopathy. Pediatrics. 2006;118(4):1467–77.

    Article  PubMed  Google Scholar 

  56. Amess PN, Penrice J, Wylezinska M, Lorek A, Townsend J, Wyatt JS, et al. Early brain proton magnetic resonance spectroscopy and neonatal neurology related to neurodevelopmental outcome at 1 year in term infants after presumed hypoxic-ischaemic brain injury. Dev Med Child Neurol. 1999;41(7):436–45.

    Article  PubMed  CAS  Google Scholar 

  57. Hanrahan JD, Cox IJ, Azzopardi D, Cowan FM, Sargentoni J, Bell JD, et al. Relation between proton magnetic resonance spectroscopy within 18 hours of birth asphyxia and neurodevelopment at 1 year of age. Dev Med Child Neurol. 1999;41(2):76–82.

    Article  PubMed  CAS  Google Scholar 

  58. Robertson NJ, Cox IJ, Cowan FM, Counsell SJ, Azzopardi D, Edwards AD. Cerebral intracellular lactic alkalosis persisting months after neonatal encephalopathy measured by magnetic resonance spectroscopy. Pediatr Res. 1999;46(3):287–96.

    Article  PubMed  CAS  Google Scholar 

  59. Boichot C, Walker PM, Durand C, Grimaldi M, Chapuis S, Gouyon JB, et al. Term neonate prognoses after perinatal asphyxia: contributions of MR imaging, MR spectroscopy, relaxation times, and apparent diffusion coefficients. Radiology. 2006;239(3):839–48.

    Article  PubMed  Google Scholar 

  60. Cheong JL, Cady EB, Penrice J, Wyatt JS, Cox IJ, Robertson NJ. Proton MR spectroscopy in neonates with perinatal cerebral hypoxic-ischemic injury: metabolite peak-area ratios, relaxation times, and absolute concentrations. AJNR Am J Neuroradiol. 2006;27(7):1546–54.

    PubMed  CAS  Google Scholar 

  61. Thayyil S, Chandrasekaran M, Taylor A, Bainbridge A, Cady EB, Chong WK, et al. Cerebral magnetic resonance biomarkers in neonatal encephalopathy: a meta-analysis. Pediatrics. 2010;125(2):e382–95.

    Article  PubMed  Google Scholar 

  62. Wilkinson D. MRI and withdrawal of life support from newborn infants with hypoxic-ischemic encephalopathy. Pediatrics. 2010;126(2):e451–8.

    Article  PubMed  Google Scholar 

  63. Vigneron DB, Barkovich AJ, Noworolski SM, von dem Bussche M, Henry RG, Lu Y, et al. Three-dimensional proton MR spectroscopic imaging of premature and term neonates. AJNR Am J Neuroradiol. 2001;22(7):1424–33.

    PubMed  CAS  Google Scholar 

  64. Miller SP, Weiss J, Barnwell A, Ferriero DM, Latal-Hajnal B, Ferrer-Rogers A, et al. Seizure-associated brain injury in term newborns with perinatal asphyxia. Neurology. 2002;58(4):542–8.

    Article  PubMed  CAS  Google Scholar 

  65. Pu Y, Garg A, Corby R, Gao JH, Zeng CM, Li QF. A positive correlation between alpha-glutamate and glutamine on brain 1 H-MR spectroscopy and neonatal seizures in moderate and severe hypoxic-ischemic encephalopathy. AJNR Am J Neuroradiol. 2008;29(2):216.

    Article  PubMed  Google Scholar 

  66. Barkovich AJ, Westmark KD, Bedi HS, Partridge JC, Ferriero DM, Vigneron DB. Proton spectroscopy and diffusion imaging on the first day of life after perinatal asphyxia: preliminary report. AJNR Am J Neuroradiol. 2001;22(9):1786–94.

    PubMed  CAS  Google Scholar 

  67. Hanrahan JD, Cox IJ, Edwards AD, Cowan FM, Sargentoni J, Bell JD, et al. Persistent increases in cerebral lactate concentration after birth asphyxia. Pediatr Res. 1998;44(3):304–11.

    Article  PubMed  CAS  Google Scholar 

  68. Holshouser BA, Ashwal S, Luh GY, Shu S, Kahlon S, Auld KL, et al. Proton MR spectroscopy after acute central nervous system injury: outcome prediction in neonates, infants, and children. Radiology. 1997;202(2):487–96.

    PubMed  CAS  Google Scholar 

  69. da Silva LF, Hoefel Filho JR, Anes M, Nunes ML. Prognostic value of 1H-MRS in neonatal encephalopathy. Pediatr Neurol. 2006;34(5):360–6.

    Article  PubMed  Google Scholar 

  70. Pavlakis SG, Kingsley PB, Harper R, Buckwald S, Spinazzola R, Frank Y, et al. Correlation of basal ganglia magnetic resonance spectroscopy with Apgar score in perinatal asphyxia. Arch Neurol. 1999;56(12):1476–81.

    Article  PubMed  CAS  Google Scholar 

  71. L’Abee C, de Vries LS, van der Grond J, Groenendaal F. Early diffusion-weighted MRI and 1 H-Magnetic Resonance Spectroscopy in asphyxiated full-term neonates. Biol Neonate. 2005;88(4):306–12.

    Article  PubMed  Google Scholar 

  72. Meyer-Witte S, Brissaud O, Brun M, Lamireau D, Bordessoules M, Chateil JF. Prognostic value of MR in term neonates with neonatal hypoxic-ischemic encephalopath: MRI score and spectroscopy. About 26 cases. Arch Pediatr. 2008;15(1):9–23.

    Article  PubMed  CAS  Google Scholar 

  73. Zarifi MK, Astrakas LG, Poussaint TY, Zurakowski D, Plessis Ad A, Tzika AA. Prediction of adverse outcome with cerebral lactate level and apparent diffusion coefficient in infants with perinatal asphyxia. Radiology. 2002;225(3):859–70.

    Article  PubMed  CAS  Google Scholar 

  74. Angeles DM, Ashwal S, Wycliffe ND, Ebner C, Fayard E, Sowers L, et al. Relationship between opioid therapy, tissue-damaging procedures, and brain metabolites as measured by proton MRS in asphyxiated term neonates. Pediatr Res. 2007;61(5 Pt 1):614–21.

    PubMed  CAS  Google Scholar 

  75. Anand KJ, Scalzo FM. Can adverse neonatal experiences alter brain development and subsequent behavior? Biol Neonate. 2000;77(2):69–82.

    Article  PubMed  CAS  Google Scholar 

  76. Porter FL, Wolf CM, Miller JP. Procedural pain in newborn infants: the influence of intensity and development. Pediatrics. 1999;104(1):e13.

    Article  PubMed  CAS  Google Scholar 

  77. Kelen D, Robertson NJ. Experimental treatments for hypoxic ischaemic encephalopathy. Early Hum Dev. 2010;86(6):369–77.

    Article  PubMed  Google Scholar 

  78. Corbo ET, Machado S, Merritt T, Wycliffe N, Ashwal S, Bartnik-Olson B. The effect of whole-body cooling on brain metabolism in the thalami following perinatal hypoxic ischemic injury. Pediatr Res. 2012;71(1):85–92.

    Google Scholar 

  79. Groenendaal F, van der Grond J, Witkamp TD, de Vries LS. Proton magnetic resonance spectroscopic imaging in neonatal stroke. Neuropediatrics. 1995;26(5):243–8.

    Article  PubMed  CAS  Google Scholar 

  80. Venkataraman A, Kingsley PB, Kalina P, Pavlakis SG, Buckwald S, Spinazzola R, et al. Newborn brain infarction: clinical aspects and magnetic resonance imaging. CNS Spectr. 2004;9(6):436–44.

    PubMed  Google Scholar 

  81. Huppi PS, Schuknecht B, Boesch C, Bossi E, Felblinger J, Fusch C, et al. Structural and neurobehavioral delay in postnatal brain development of preterm infants. Pediatr Res. 1996;39(5):895–901.

    Article  PubMed  CAS  Google Scholar 

  82. Roelants-van Rijn AM, van der Grond J, Stigter RH, de Vries LS, Groenendaal F. Cerebral structure and metabolism and long-term outcome in small-for-gestational-age preterm neonates. Pediatr Res. 2004;56(2):285–90.

    Article  PubMed  Google Scholar 

  83. Robertson NJ, Kuint J, Counsell TJ, Rutherford TA, Coutts A, Cox IJ, et al. Characterization of cerebral white matter damage in preterm infants using 1 H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Metab. 2000;20(10):1446–56.

    Article  PubMed  CAS  Google Scholar 

  84. Toft PB, Leth H, Peitersen B, Lou HC. Metabolic changes in the striatum after germinal matrix hemorrhage in the preterm infant. Pediatr Res. 1997;41(3):309–16.

    Article  PubMed  CAS  Google Scholar 

  85. Wang X, Wu W, Hou BL, Zhang P, Chineah A, Liu F, et al. Studying neonatal bilirubin encephalopathy with conventional MRI, MRS, and DWI. Neuroradiology. 2008;50(10):885–93.

    Article  PubMed  Google Scholar 

  86. Augustine EM, Spielman DM, Barnes PD, Sutcliffe TL, Dermon JD, Mirmiran M, et al. Can magnetic resonance spectroscopy predict neurodevelopmental outcome in very low birth weight preterm infants? J Perinatol. 2008;28(9):611–8. PMCID: 2844764.

    Article  PubMed  CAS  Google Scholar 

  87. Gimenez M, Soria-Pastor S, Junque C, Caldu X, Narberhaus A, Botet F, et al. Proton magnetic resonance spectroscopy reveals medial temporal metabolic abnormalities in adolescents with history of preterm birth. Pediatr Res. 2008;64(5):572–7.

    Article  PubMed  CAS  Google Scholar 

  88. Johnston MV. Congenital heart disease and brain injury. N Engl J Med. 2007;357(19):1971–3.

    Article  PubMed  CAS  Google Scholar 

  89. Sherlock RL, McQuillen PS, Miller SP. Preventing brain injury in newborns with congenital heart disease: brain imaging and innovative trial designs. Stroke. 2009;40(1):327–32.

    Article  PubMed  Google Scholar 

  90. Scallan MJ. Brain injury in children with congenital heart disease. Paediatr Anaesth. 2003;13(4):284–93.

    Article  PubMed  Google Scholar 

  91. Bird GL, Jeffries HE, Licht DJ, Wernovsky G, Weinberg PM, Pizarro C, et al. Neurological complications associated with the treatment of patients with congenital cardiac disease: consensus definitions from the Multi-Societal Database Committee for Pediatric and Congenital Heart Disease. Cardiol Young. 2008;18 Suppl 2:234–9. PMCID: 2742973.

    Article  PubMed  Google Scholar 

  92. Ashwal S, Holshouser BA, Hinshaw Jr DB, Schell RM, Bailey L. Proton magnetic resonance spectroscopy in the evaluation of children with congenital heart disease and acute central nervous system injury. J Thorac Cardiovasc Surg. 1996;112(2):403–14.

    Article  PubMed  CAS  Google Scholar 

  93. Mahle WT, Tavani F, Zimmerman RA, Nicolson SC, Galli KK, Gaynor JW, et al. An MRI study of neurological injury before and after congenital heart surgery. Circulation. 2002;106(12 Suppl 1):I109–14.

    PubMed  Google Scholar 

  94. Ashwal S, Holshouser BA, del Rio MJ, Tong KA, Applegate RL, Bailey LL. Serial proton magnetic resonance spectroscopy of the brain in children undergoing cardiac surgery. Pediatr Neurol. 2003;29(2):99–110.

    Article  PubMed  Google Scholar 

  95. Miller SP, McQuillen PS, Vigneron DB, Glidden DV, Barkovich AJ, Ferriero DM, et al. Preoperative brain injury in newborns with transposition of the great arteries. Ann Thorac Surg. 2004;77(5):1698–706.

    Article  PubMed  Google Scholar 

  96. Miller SP, McQuillen PS, Hamrick S, Xu D, Glidden DV, Charlton N, et al. Abnormal brain development in newborns with congenital heart disease. N Engl J Med. 2007;357(19):1928–38.

    Article  PubMed  CAS  Google Scholar 

  97. Park IS, Yoon SY, Min JY, Kim YH, Ko JK, Kim KS, et al. Metabolic alterations and neurodevelopmental outcome of infants with transposition of the great arteries. Pediatr Cardiol. 2006;27(5):569–76.

    Article  PubMed  Google Scholar 

  98. Bulas D, Glass P. Neonatal ECMO: neuroimaging and neurodevelopmental outcome. Semin Perinatol. 2005;29(1):58–65.

    Article  PubMed  Google Scholar 

  99. Voet D, Voet J. Biochemistry. 3rd ed. New Jersey: Wiley; 2004.

    Google Scholar 

  100. de Graaf RA. In vivo NMR spectroscopy: principles and techniques. 2nd ed. New Jersey: Wiley; 2007.

    Book  Google Scholar 

  101. Cerdan S, Subramanian VH, Hilberman M, Cone J, Egan J, Chance B, et al. 31P NMR detection of mobile dog brain phospholipids. Magn Reson Med. 1986;3(3):432–9.

    Article  PubMed  CAS  Google Scholar 

  102. Murphy EJ, Rajagopalan B, Brindle KM, Radda GK. Phospholipid bilayer contribution to 31P NMR spectra in vivo. Magn Reson Med. 1989;12(2):282–9.

    Article  PubMed  CAS  Google Scholar 

  103. Buchli R, Martin E, Boesiger P, Rumpel H. Developmental changes of phosphorus metabolite concentrations in the human brain: a 31P magnetic resonance spectroscopy study in vivo. Pediatr Res. 1994;35(4 Pt 1):431–5.

    Article  PubMed  CAS  Google Scholar 

  104. Cady EB, Costello AM, Dawson MJ, Delpy DT, Hope PL, Reynolds EO, et al. Non-invasive investigation of cerebral metabolism in newborn infants by phosphorus nuclear magnetic resonance spectroscopy. Lancet. 1983;1(8333):1059–62.

    Article  PubMed  CAS  Google Scholar 

  105. Hope PL, Costello AM, Cady EB, Delpy DT, Tofts PS, Chu A, et al. Cerebral energy metabolism studied with phosphorus NMR spectroscopy in normal and birth-asphyxiated infants. Lancet. 1984;2(8399):366–70.

    Article  PubMed  CAS  Google Scholar 

  106. Azzopardi D, Wyatt JS, Cady EB, Delpy DT, Baudin J, Stewart AL, et al. Prognosis of newborn infants with hypoxic-ischemic brain injury assessed by phosphorus magnetic resonance spectroscopy. Pediatr Res. 1989;25(5):445–51.

    Article  PubMed  CAS  Google Scholar 

  107. Roth SC, Edwards AD, Cady EB, Delpy DT, Wyatt JS, Azzopardi D, et al. Relation between cerebral oxidative metabolism following birth asphyxia, and neurodevelopmental outcome and brain growth at one year. Dev Med Child Neurol. 1992;34(4):285–95.

    Article  PubMed  CAS  Google Scholar 

  108. Martin E, Buchli R, Ritter S, Schmid R, Largo RH, Boltshauser E, et al. Diagnostic and prognostic value of cerebral 31P magnetic resonance spectroscopy in neonates with perinatal asphyxia. Pediatr Res. 1996;40(5):749–58.

    Article  PubMed  CAS  Google Scholar 

  109. Maisels MJ. Neonatal hyperbilirubinemia and kernicterus - not gone but sometimes forgotten. Early Hum Dev. 2009;85(11):727–32.

    Article  PubMed  CAS  Google Scholar 

  110. Ahlfors CE. Predicting bilirubin neurotoxicity in jaundiced newborns. Curr Opin Pediatr. 2010;22(2):129–33.

    Article  PubMed  Google Scholar 

  111. Cohen RS, Wong RJ, Stevenson DK. Understanding neonatal jaundice: a perspective on causation. Pediatr Neonatol. 2010;51(3):143–8.

    Article  PubMed  Google Scholar 

  112. Groenendaal F, van der Grond J, de Vries LS. Cerebral metabolism in severe neonatal hyperbilirubinemia. Pediatrics. 2004;114(1):291–4.

    Article  PubMed  Google Scholar 

  113. Oakden WK, Moore AM, Blaser S, Noseworthy MD. 1 H MR spectroscopic characteristics of kernicterus: a possible metabolic signature. AJNR Am J Neuroradiol. 2005;26(6):1571–4.

    PubMed  Google Scholar 

  114. Rozance PJ, Hay Jr WW. Describing hypoglycemia—definition or operational threshold? Early Hum Dev. 2010;86(5):275–80. PMCID: 2900507.

    Article  PubMed  CAS  Google Scholar 

  115. Straussman S, Levitsky LL. Neonatal hypoglycemia. Curr Opin Endocrinol Diabetes Obes. 2010;17(1):20–4.

    PubMed  CAS  Google Scholar 

  116. Montassir H, Maegaki Y, Ogura K, Kurozawa Y, Nagata I, Kanzaki S, et al. Associated factors in neonatal hypoglycemic brain injury. Brain Dev. 2009;31(9):649–56.

    Article  PubMed  Google Scholar 

  117. Hay Jr WW, Raju TN, Higgins RD, Kalhan SC, Devaskar SU. Knowledge gaps and research needs for understanding and treating neonatal hypoglycemia: workshop report from Eunice Kennedy Shriver National Institute of Child Health and Human Development. J Pediatr. 2009;155(5):612–7.

    Article  PubMed  Google Scholar 

  118. Kim SY, Goo HW, Lim KH, Kim ST, Kim KS. Neonatal hypoglycaemic encephalopathy: diffusion-weighted imaging and proton MR spectroscopy. Pediatr Radiol. 2006;36(2):144–8.

    Article  PubMed  Google Scholar 

  119. Musson RE, Batty R, Mordekar SR, Wilkinson ID, Griffiths PD, Connolly DJ. Diffusion-weighted imaging and magnetic resonance spectroscopy findings in a case of neonatal hypoglycaemia. Dev Med Child Neurol. 2009;51(8):653–4.

    Article  PubMed  Google Scholar 

  120. LaFranchi SH. Newborn screening strategies for congenital hypothyroidism: an update. J Inherit Metab Dis. 2010;33 Suppl 2:S225–33.

    Article  PubMed  CAS  Google Scholar 

  121. Shih JL, Agus MS. Thyroid function in the critically ill newborn and child. Curr Opin Pediatr. 2009;21(4):536–40.

    Article  PubMed  Google Scholar 

  122. Akinci A, Sarac K, Gungor S, Mungan I, Aydin O. Brain MR spectroscopy findings in neonates with hypothyroidism born to mothers living in iodine-deficient areas. AJNR Am J Neuroradiol. 2006;27(10):2083–7.

    PubMed  CAS  Google Scholar 

  123. Bizzi A, Castelli G, Bugiani M, Barker PB, Herskovits EH, Danesi U, et al. Classification of childhood white matter disorders using proton MR spectroscopic imaging. AJNR Am J Neuroradiol. 2008;29(7):1270–5. PMCID: 2944924.

    Article  PubMed  CAS  Google Scholar 

  124. Barkovich AJ. An approach to MRI of metabolic disorders in children. J Neuroradiol. 2007;34(2):75–88.

    Article  PubMed  CAS  Google Scholar 

  125. Burlina AP, Aureli T, Bracco F, Conti F, Battistin L. MR spectroscopy: a powerful tool for investigating brain function and neurological diseases. Neurochem Res. 2000;25(9–10):1365–72.

    Article  PubMed  CAS  Google Scholar 

  126. Chabrol B, Salvan AM, Confort-Gouny S, Vion-Dury J, Cozzone PJ. Localized proton magnetic resonance spectroscopy of the brain differentiates the inborn metabolic encephalopathies in children. C R Acad Sci III. 1995;318(9):985–92.

    PubMed  CAS  Google Scholar 

  127. Barker PB, Horska A. Neuroimaging in leukodystrophies. J Child Neurol. 2004;19(8):559–70.

    Article  PubMed  Google Scholar 

  128. Gulati S, Shah T, Menon S, Jayasundar R, Kalra V. Magnetic resonance spectroscopy in pediatric neurology. Indian J Pediatr. 2003;70(4):317–25.

    Article  PubMed  Google Scholar 

  129. Lin A, Ross BD, Harris K, Wong W. Efficacy of proton magnetic resonance spectroscopy in neurological diagnosis and neurotherapeutic decision making. NeuroRx. 2005;2(2):197–214. PMCID: 1064986.

    Article  PubMed  Google Scholar 

  130. Lin DD, Crawford TO, Barker PB. Proton MR spectroscopy in the diagnostic evaluation of suspected mitochondrial disease. AJNR Am J Neuroradiol. 2003;24(1):33–41.

    PubMed  Google Scholar 

  131. Wang ZJ, Zimmerman RA. Proton MR spectroscopy of pediatric brain metabolic disorders. Neuroimaging Clin N Am. 1998;8(4):781–807.

    PubMed  CAS  Google Scholar 

  132. Engelke UF, Liebrand-van Sambeek ML, de Jong JG, Leroy JG, Morava E, Smeitink JA, et al. N-acetylated metabolites in urine: proton nuclear magnetic resonance spectroscopic study on patients with inborn errors of metabolism. Clin Chem. 2004;50(1):58–66.

    Article  PubMed  CAS  Google Scholar 

  133. Bamforth FJ, Dorian V, Vallance H, Wishart DS. Diagnosis of inborn errors of metabolism using 1 H NMR spectroscopic analysis of urine. J Inherit Metab Dis. 1999;22(3):297–301.

    Article  PubMed  CAS  Google Scholar 

  134. Brown JC, Mills GA, Sadler PJ, Walker V. 1 H NMR studies of urine from premature and sick babies. Magn Reson Med. 1989;11(2):193–201.

    Article  PubMed  CAS  Google Scholar 

  135. Trump S, Laudi S, Unruh N, Goelz R, Leibfritz D. 1 H-NMR metabolic profiling of human neonatal urine. MAGMA. 2006;19(6):305–12.

    Article  PubMed  CAS  Google Scholar 

  136. Ma S, Shieh LI, Huang CC. High-resolution proton nuclear magnetic resonance studies of urine from asphyxiated newborn infants. Appl Biochem Biotechnol. 1995;53(1):37–51.

    Article  PubMed  CAS  Google Scholar 

  137. Coen M, O’Sullivan M, Bubb WA, Kuchel PW, Sorrell T. Proton nuclear magnetic resonance-based metabonomics for rapid diagnosis of meningitis and ventriculitis. Clin Infect Dis. 2005;41(11):1582–90.

    Article  PubMed  CAS  Google Scholar 

  138. Oh W, Perritt R, Shankaran S, Merritts M, Donovan EF, Ehrenkranz RA, et al. Association between urinary lactate to creatinine ratio and neurodevelopmental outcome in term infants with hypoxic-ischemic encephalopathy. J Pediatr. 2008;153(3):375–8.

    Article  PubMed  CAS  Google Scholar 

  139. Braun KP, Gooskens RH, Vandertop WP, Tulleken CA, van der Grond J. 1 H magnetic resonance spectroscopy in human hydrocephalus. J Magn Reson Imaging. 2003;17(3):291–9.

    Article  PubMed  Google Scholar 

  140. McNatt SA, McComb JG, Nelson MD, Bluml S. Proton magnetic resonance spectroscopy of hydrocephalic infants. Pediatr Neurosurg. 2007;43(6):461–7.

    Article  PubMed  Google Scholar 

  141. Hoon Jr AH, Melhem ER. Neuroimaging: applications in disorders of early brain development. J Dev Behav Pediatr. 2000;21(4):291–302.

    Article  PubMed  Google Scholar 

  142. Groeschel S, Brockmann K, Dechent P, Wilichowski E, Frahm J, Hanefeld F. Magnetic resonance imaging and proton magnetic resonance spectroscopy of megalencephaly and dilated Virchow-Robin spaces. Pediatr Neurol. 2006;34(1):35–40.

    Article  PubMed  Google Scholar 

  143. Azpurua H, Alvarado A, Mayobre F, Salom T, Copel JA, Guevara-Zuloaga F. Metabolic assessment of the brain using proton magnetic resonance spectroscopy in a growth-restricted human fetus: case report. Am J Perinatol. 2008;25(5):305–9.

    Article  PubMed  Google Scholar 

  144. Lee AG, Goldberg MF, Gillard JH, Barker PB, Bryan RN. Intracranial assessment of incontinentia pigmenti using magnetic resonance imaging, angiography, and spectroscopic imaging. Arch Pediatr Adolesc Med. 1995;149(5):573–80.

    Article  PubMed  CAS  Google Scholar 

  145. Sutton LN, Lenkinski RE, Cohen BH, Packer RJ, Zimmerman RA. Localized 31P magnetic resonance spectroscopy of large pediatric brain tumors. J Neurosurg. 1990;72(1):65–70.

    Article  PubMed  CAS  Google Scholar 

  146. Cutter WJ, Daly EM, Robertson DM, Chitnis XA, van Amelsvoort TA, Simmons A, et al. Influence of X chromosome and hormones on human brain development: a magnetic resonance imaging and proton magnetic resonance spectroscopy study of Turner syndrome. Biol Psychiatry. 2006;59(3):273–83.

    Article  PubMed  CAS  Google Scholar 

  147. Sigirci A, Alkan A, Kutlu R, Gulcan H. Multivoxel magnetic resonance spectroscopy in a rhizomelic chondrodysplasia punctata case. J Child Neurol. 2005;20(8):698–701.

    Article  PubMed  Google Scholar 

  148. Viola A, Confort-Gouny S, Ranjeva JP, Chabrol B, Raybaud C, Vintila F, et al. MR imaging and MR spectroscopy in rhizomelic chondrodysplasia punctata. AJNR Am J Neuroradiol. 2002;23(3):480–3.

    PubMed  Google Scholar 

  149. Sijens PE, Reijngoud DJ, Soorani-Lunsing RJ, Oudkerk M, van Spronsen FJ. Cerebral 1 H MR spectroscopy showing elevation of brain guanidinoacetate in argininosuccinate lyase deficiency. Mol Genet Metab. 2006;88(1):100–2.

    Article  PubMed  CAS  Google Scholar 

  150. Janson CG, McPhee SW, Francis J, Shera D, Assadi M, Freese A, et al. Natural history of Canavan disease revealed by proton magnetic resonance spectroscopy (1 H-MRS) and diffusion-weighted MRI. Neuropediatrics. 2006;37(4):209–21.

    Article  PubMed  CAS  Google Scholar 

  151. Longo D, Fariello G, Dionisi-Vici C, Cannata V, Boenzi S, Genovese E, et al. MRI and 1 H-MRS findings in early-onset cobalamin C/D defect. Neuropediatrics. 2005;36(6):366–72.

    Article  PubMed  CAS  Google Scholar 

  152. Cecil KM, DeGrauw TJ, Salomons GS, Jakobs C, Egelhoff JC, Clark JF. Magnetic resonance spectroscopy in a 9-day-old heterozygous female child with creatine transporter deficiency. J Comput Assist Tomogr. 2003;27(1):44–7.

    Article  PubMed  Google Scholar 

  153. Berry GT, Hunter JV, Wang Z, Dreha S, Mazur A, Brooks DG, et al. In vivo evidence of brain galactitol accumulation in an infant with galactosemia and encephalopathy. J Pediatr. 2001;138(2):260–2.

    Article  PubMed  CAS  Google Scholar 

  154. Wang ZJ, Berry GT, Dreha SF, Zhao H, Segal S, Zimmerman RA. Proton magnetic resonance spectroscopy of brain metabolites in galactosemia. Ann Neurol. 2001;50(2):266–9.

    Article  PubMed  CAS  Google Scholar 

  155. Shevell MI, Didomenicantonio G, Sylvain M, Arnold DL, O’Gorman AM, Scriver CR. Glutaric acidemia type II: neuroimaging and spectroscopy evidence for developmental encephalomyopathy. Pediatr Neurol. 1995;12(4):350–3.

    Article  PubMed  CAS  Google Scholar 

  156. Read MH, Bonamy C, Laloum D, Belloy F, Constans JM, Guillois B, et al. Clinical, biochemical, magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy (1 H MRS) findings in a fourth case of combined D- and L-2 hydroxyglutaric aciduria. J Inherit Metab Dis. 2005;28(6):1149–50.

    Article  PubMed  Google Scholar 

  157. Lorek AK, Penrice JM, Cady EB, Leonard JV, Wyatt JS, Iles RA, et al. Cerebral energy metabolism in isovaleric acidaemia. Arch Dis Child Fetal Neonatal Ed. 1996;74(3):F211–3. PMCID: 2528338.

    Article  PubMed  CAS  Google Scholar 

  158. Jan W, Zimmerman RA, Wang ZJ, Berry GT, Kaplan PB, Kaye EM. MR diffusion imaging and MR spectroscopy of maple syrup urine disease during acute metabolic decompensation. Neuroradiology. 2003;45(6):393–9.

    Article  PubMed  Google Scholar 

  159. Al-Essa MA. Al Amir A, Rashed M, Al Jishi E, Abutaleb A, Mobaireek K, et al. Clinical, fluorine-18 labeled 2-fluoro-2-deoxyglucose positron emission tomography of the brain, MR spectroscopy, and therapeutic attempts in methylenetetrahydrofolate reductase deficiency. Brain Dev. 1999;21(5):345–9.

    Article  PubMed  CAS  Google Scholar 

  160. Dinopoulos A, Cecil KM, Schapiro MB, Papadimitriou A, Hadjigeorgiou GM, Wong B, et al. Brain MRI and proton MRS findings in infants and children with respiratory chain defects. Neuropediatrics. 2005;36(5):290–301.

    Article  PubMed  CAS  Google Scholar 

  161. Boddaert N, Romano S, Funalot B, Rio M, Sarzi E, Lebre AS, et al. 1 H MRS spectroscopy evidence of cerebellar high lactate in mitochondrial respiratory chain deficiency. Mol Genet Metab. 2008;93(1):85–8.

    Article  PubMed  CAS  Google Scholar 

  162. Choi CG, Lee HK, Yoon JH. Localized proton MR spectroscopic detection of nonketotic hyperglycinemia in an infant. Korean J Radiol. 2001;2(4):239–42. PMCID: 2718128.

    Article  PubMed  CAS  Google Scholar 

  163. Gabis L, Parton P, Roche P, Lenn N, Tudorica A, Huang W. In vivo 1 H magnetic resonance spectroscopic measurement of brain glycine levels in nonketotic hyperglycinemia. J Neuroimaging. 2001;11(2):209–11.

    Article  PubMed  CAS  Google Scholar 

  164. Huisman TA, Thiel T, Steinmann B, Zeilinger G, Martin E. Proton magnetic resonance spectroscopy of the brain of a neonate with nonketotic hyperglycinemia: in vivo-in vitro (ex vivo) correlation. Eur Radiol. 2002;12(4):858–61.

    Article  PubMed  CAS  Google Scholar 

  165. Manley BJ, Sokol J, Cheong JL. Intracerebral blood and MRS in neonatal nonketotic hyperglycinemia. Pediatr Neurol. 2010;42(3):219–22.

    Article  PubMed  Google Scholar 

  166. Sener RN. Nonketotic hyperglycinemia: diffusion magnetic resonance imaging findings. J Comput Assist Tomogr. 2003;27(4):538–40.

    Article  PubMed  Google Scholar 

  167. Shah DK, Tingay DG, Fink AM, Hunt RW, Dargaville PA. Magnetic resonance imaging in neonatal nonketotic hyperglycinemia. Pediatr Neurol. 2005;33(1):50–2.

    Article  PubMed  Google Scholar 

  168. Bergman AJ, Van der Knaap MS, Smeitink JA, Duran M, Dorland L, Valk J, et al. Magnetic resonance imaging and spectroscopy of the brain in propionic acidemia: clinical and biochemical considerations. Pediatr Res. 1996;40(3):404–9.

    Article  PubMed  CAS  Google Scholar 

  169. Chemelli AP, Schocke M, Sperl W, Trieb T, Aichner F, Felber S. Magnetic resonance spectroscopy (MRS) in five patients with treated propionic acidemia. J Magn Reson Imaging. 2000;11(6):596–600.

    Article  PubMed  CAS  Google Scholar 

  170. Zand DJ, Simon EM, Pulitzer SB, Wang DJ, Wang ZJ, Rorke LB, et al. In vivo pyruvate detected by MR spectroscopy in neonatal pyruvate dehydrogenase deficiency. AJNR Am J Neuroradiol. 2003;24(7):1471–4.

    PubMed  Google Scholar 

  171. Caruso PA, Poussaint TY, Tzika AA, Zurakowski D, Astrakas LG, Elias ER, et al. MRI and 1 H MRS findings in Smith-Lemli-Opitz syndrome. Neuroradiology. 2004;46(1):3–14.

    Article  PubMed  CAS  Google Scholar 

  172. Eichler F, Tan WH, Shih VE, Grant PE, Krishnamoorthy K. Proton magnetic resonance spectroscopy and diffusion-weighted imaging in isolated sulfite oxidase deficiency. J Child Neurol. 2006;21(9):801–5.

    Article  PubMed  Google Scholar 

  173. Hoffmann C, Ben-Zeev B, Anikster Y, Nissenkorn A, Brand N, Kuint J, et al. Magnetic resonance imaging and magnetic resonance spectroscopy in isolated sulfite oxidase deficiency. J Child Neurol. 2007;22(10):1214–21.

    Article  PubMed  Google Scholar 

  174. Choi CG, Yoo HW. Localized proton MR spectroscopy in infants with urea cycle defect. AJNR Am J Neuroradiol. 2001;22(5):834–7.

    PubMed  CAS  Google Scholar 

  175. Engelke UF, Sass JO, Van Coster RN, Gerlo E, Olbrich H, Krywawych S, et al. NMR spectroscopy of aminoacylase 1 deficiency, a novel inborn error of metabolism. NMR Biomed. 2008;21(2):138–47.

    Article  PubMed  CAS  Google Scholar 

  176. Davies SE, Iles RA, Stacey TE, de Sousa C, Chalmers RA. Carnitine therapy and metabolism in the disorders of propionyl-CoA metabolism studied using 1 H-NMR spectroscopy. Clin Chim Acta. 1991;204(1–3):263–77.

    Article  PubMed  CAS  Google Scholar 

  177. Burns SP, Holmes HC, Chalmers RA, Johnson A, Iles RA. Proton NMR spectroscopic analysis of multiple acyl-CoA dehydrogenase deficiency–capacity of the choline oxidation pathway for methylation in vivo. Biochim Biophys Acta. 1998;1406(3):274–82.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Ashwal M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ashwal, S., Bartnik-Olson, B., Holshouser, B. (2013). Proton Magnetic Resonance Spectroscopy: Applications in Neonatal Medicine. In: BlĂĽml, S., Panigrahy, A. (eds) MR Spectroscopy of Pediatric Brain Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5864-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5864-8_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-5863-1

  • Online ISBN: 978-1-4419-5864-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics