Skip to main content

Advertisement

Log in

Clinical applications of diffusion tensor imaging and tractography in children

  • Minisymposium
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Diffusion tensor imaging (DTI) is a relatively new addition to routine MR imaging. DTI exploits the preferential movement of water protons within the brain along the axis of the axons. This anisotropic diffusion provides information about the immature brain prior to myelination, during maturation, and in normal and disease states, information that MRI cannot provide. By virtue of sensitivity to anisotropic movement of protons, DTI allows the core of larger individual white matter tracts to be visualized as discreet anatomic structures. DTI can also provide information about the microarchitecture of white matter in the form of metrics referred to as fractional anisotropy and diffusivity. The information contained within the diffusion tensor data can be used to create 3-D mathematical renderings of white matter or tractography. This article is an introduction to DTI for pediatric radiologists interested in exploring potential applications in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Jellison BJ, Field AS, Medow J et al (2004) Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR 25:356–369

    PubMed  Google Scholar 

  2. Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data analysis – a technical review. NMR Biomed 15:456–467

    Article  PubMed  Google Scholar 

  3. Basser PJ, Pajevic S, Pierpaoli C et al (2000) In vitro fiber tractography using DT-MRI data. Magn Reson Med 44:625–632

    Article  PubMed  CAS  Google Scholar 

  4. Pajevic S, Pierpaoli C (1999) Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med 42:526–540

    Article  PubMed  CAS  Google Scholar 

  5. Dong Q, Welsh RC, Chenevert TL et al (2004) Clinical applications of diffusion tensor imaging. J Magn Reson Imaging 19:6–18

    Article  PubMed  Google Scholar 

  6. Miller JH, McKinstry RC, Philip JV et al (2003) Diffusion tensor MR imaging of normal brain maturation: a guide to structural development and myelination. AJR 180:851–859

    PubMed  Google Scholar 

  7. Schneider JF, Il’yasov KA, Hennig J et al (2004) Fast quantitative diffusion-tensor imaging of cerebral white matter from the neonatal period to adolescence. Neuroradiology 46:258–266

    Article  PubMed  CAS  Google Scholar 

  8. DaSilva AF, Tuch DS, Weigell MR et al (2003) A primer on diffusion tensor imaging of anatomical substructures. Neurosurg Focus 15:1–4

    Article  Google Scholar 

  9. Poupon C, Clark CA, Frouin V et al (2000) Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles. Neuroimage 12:184–195

    Article  PubMed  CAS  Google Scholar 

  10. Jones DK, Simmons A, Williams SC et al (1999) Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI. Magn Reson Med 42:37–41

    Article  PubMed  CAS  Google Scholar 

  11. Wakana S, Jiang H, Nagae-Poetscher LM et al (2004) Fiber track-based atlas of human white matter anatomy. Radiology 230:77–87

    Article  PubMed  Google Scholar 

  12. Mori S, Kaufmann WE, Davatzikos C et al (2002) Imaging cortical association tracts in the human brain using diffusion tensor-based axonal tracking. Magn Reson Med 47:215–223

    Article  PubMed  Google Scholar 

  13. Stieljes B, Kaufmann WE, van Zijl PC et al (2001) Diffusion tensor imaging and axonal tracking in the brainstem. Neuroimage 14:723–735

    Article  Google Scholar 

  14. Carpenter MB, Sutin J (1983) Human neuroanatomy, 8th edn. Williams and Wilkins, Baltimore, Md

    Google Scholar 

  15. Marenco S, Rawlings R, Rohde GK et al (2006) Regional distribution of measurement error in diffusion tensor imaging. Psychiatry Res 147:69–78

    Article  PubMed  Google Scholar 

  16. Ozarslan E, Mareci TH (2003) Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution imaging. Magn Reson Med 50:955–965

    Article  PubMed  Google Scholar 

  17. Barkovich AJ, Kjos BO, Jackson DE Jr et al (1988) Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 166:173–180

    PubMed  CAS  Google Scholar 

  18. Mukherjee P, Miller JH, Shimony JS et al (2001) Normal brain maturation during childhood: developmental trends characterized with MR. Radiology 221:349–358

    Article  PubMed  CAS  Google Scholar 

  19. Schmithorst VJ, Wilke M, Dardzinski BJ et al (2002) Correlation of white matter diffusivity and anisotropy during childhood and adolescence: a cross-sectional diffusion tensor imaging study. Radiology 222:212–218

    Article  PubMed  Google Scholar 

  20. Zhang L, Thomas KM, Davidson MC et al (2005) Quantitation of volume and diffusion changes in the developing brain. AJNR 26:45–49

    PubMed  Google Scholar 

  21. Li TQ, Noseworthy MD (2002) Mapping the development of white matter tracts with diffusion tensor imaging. Dev Sci 5:293–300

    Article  Google Scholar 

  22. McGraw P, Liang L, Provenzale JM (2002) Evaluation of normal age-related changes in anisotropy during infancy and childhood as shown by diffusion tensor imaging. AJR 179:1515–1522

    PubMed  Google Scholar 

  23. Schaefer PW, Grant PR, Gonzalez RG (2000) Diffusion-weighted MR imaging of the brain. Radiology 217:331–345

    PubMed  CAS  Google Scholar 

  24. Zhai G, Lin W, Wilber KP et al (2003) Comparisons of regional white matter diffusion in healthy neonates and adults performed with a 3.0-T head-only MR imaging unit. Radiology 229:673–681

    Article  PubMed  Google Scholar 

  25. Wilde E, Chu Z, Bigler ED (2006) Diffusion tensor imaging in the corpus callosum in children after moderate to severe traumatic brain injury. J Neurotrauma 23:1412–1426

    Article  PubMed  Google Scholar 

  26. Warner TD, Behnke M, Fonda Eyler FD et al (2006) Diffusion tensor imaging of frontal white matter and executive functioning in cocaine-exposed children. Pediatrics 118:2014–2024

    Article  PubMed  Google Scholar 

  27. Nagy Z, Westerberg H, Skare S et al (2003) Preterm children have disturbances of white matter at 11 years of age as shown by diffusion tensor imaging. Pediatr Res 54:672–679

    Article  PubMed  Google Scholar 

  28. Deutsch GK, Dougherty RF, Bammer R et al (2005) Children’s reading performance is correlated with white matter structure measured by diffusion tensor imaging. Cortex 41:354–363

    PubMed  Google Scholar 

  29. Klingberg T, Hedehus M, Temple E et al (2000) Microstructure of temporo-parietal white matter as a basis for reading ability: evidence from diffusion tensor magnetic resonance imaging. Neuron 25:493–500

    Article  PubMed  CAS  Google Scholar 

  30. Filippi CG, Doris DM, Lin DD et al (2003) Diffusion-tensor MR imaging in children with developmental delay: preliminary findings. Radiology 229:44–50

    Article  PubMed  Google Scholar 

  31. Hoon AH Jr, Lawrie WT Jr, Melham ER et al (2002) Diffusion tensor imaging of periventricular leukomalacia shows affected sensory cortex white matter pathways. Neurology 59:752–756

    PubMed  Google Scholar 

  32. Engelbrecht V, Scherer A, Rassek M et al (2002) Diffusion-weighted MR imaging in the brain in children: findings in the normal brain and in the brain with white matter diseases. Radiology 222:410–418

    Article  PubMed  Google Scholar 

  33. Barnea-Goraly N, Kwon H, Menon V et al (2004) White matter structure in autism: preliminary evidence from diffusion tensor imaging. Biol Psychiatry 55:323–326

    Article  PubMed  Google Scholar 

  34. Kubicki M, Westin CF, Maier SE et al (2002) Diffusion tensor imaging and its application to neuropsychiatric disorders. Harvard Rev Psychiatry 10:324–336

    Article  Google Scholar 

  35. Cannistraro PA, Makris N, Howard JD et al (2006) A diffusion tensor imaging study of white matter in obsessive-compulsive disorder. Depress Anxiety. DOI: 10.1002/da.20246

  36. Helton KJ, Phillips NS, Khan RB et al (2006) Diffusion tensor imaging of tract involvement in children with pontine tumors. AJNR 27:786–793

    PubMed  CAS  Google Scholar 

  37. Roux FE, Boulanouar K, Ibarrola D et al (2000) Functional MRI and intraoperative brain mapping to evaluate brain plasticity in patients with brain tumor and hemiparesis. J Neurol Neurosurg Psychiatry 69:453–463

    Article  PubMed  CAS  Google Scholar 

  38. Lee SK, Mori S, Kim DJ et al (2004) Diffusion tensor MR imaging visualizes the altered hemispheric fiber connection in callosal dysgenesis. AJNR 25:25–28

    PubMed  CAS  Google Scholar 

  39. Lee SK, Kim DI, Kim J et al (2005) Diffusion-tensor MR imaging and fiber tractography: a new method of describing aberrant fiber connections in developmental CNS anomalies. Radiographics 25:53–65

    Article  PubMed  Google Scholar 

  40. Tovar-Moll F, Moll J, de Oliveira-Souza R et al (2006) Neuroplasticity in human callosal dysgenesis: a diffusion tensor imaging study. Cereb Cortex 17:531–541

    Article  PubMed  Google Scholar 

  41. Rugg-Gunn FJ, Symms MR, Barker GJ et al (2001) Diffusion tensor imaging in patients with epilepsy and malformations of cortical development. Brain 124:617–626

    Article  PubMed  Google Scholar 

  42. Rollins N (2005) Semilobar holoprosencephaly as seen with diffusion tensor imaging and fiber tracking. AJNR 26:2148–2152

    PubMed  Google Scholar 

  43. Albayram S, Melhem ER, Mori S et al (2002) Holoprosencephaly in children: diffusion tensor MR imaging of white matter tracts of the brainstem – initial experience. Radiology 223:645–651

    Article  PubMed  Google Scholar 

  44. Rollins N, Reyes T, Chia J (2005) Diffusion tensor imaging in lissencephaly. AJNR 26:1583–1586

    PubMed  Google Scholar 

  45. Vachha B, Adams R, Rollins N (2006) Depiction of limbic tract anomalies with diffusion tensor imaging and fiber tract reconstruction: initial investigation of associations with memory and learning in children with myelomeningocele and Chiari II malformation. Radiology 240:194–202

    Article  PubMed  Google Scholar 

  46. Raybaud C, Girard N (2005) Malformations of the telencephalic commissures. In: Tortori-Donati P (ed) Pediatric neuroradiology. Springer, Berlin, pp 41–69

    Google Scholar 

  47. Tortori-Donati P, Rossi A, Biancheri R (2005) Brain malformations. In: Tortori-Donati P (ed) Pediatric neuroradiology. Springer, Berlin, pp 73–198

    Google Scholar 

  48. McKinstry RC, Mathur A, Jeffrey H et al (2002) Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI. Cereb Cortex 2:1237–1243

    Article  Google Scholar 

  49. Bui T, Daire JL, Chalard F (2006) Microstructural development of human brain assessed in utero by diffusion tensor. Pediatr Radiol 36:1133–1140

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy K. Rollins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rollins, N.K. Clinical applications of diffusion tensor imaging and tractography in children. Pediatr Radiol 37, 769–780 (2007). https://doi.org/10.1007/s00247-007-0524-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-007-0524-z

Keywords

Navigation