Skip to main content

Advertisement

Log in

Assessment of lung function in children by cross-sectional imaging: techniques and clinical applications

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Imaging techniques are indispensable for diagnosis and follow-up of paediatric pulmonary diseases. In the past, interest was focused on morphological aspects of pulmonary tissue. With the development of novel CT and MRI techniques, functional pulmonary imaging became available. In this review, the new techniques of cross-sectional functional imaging of the lung are presented and the value of these methods for investigating paediatric pulmonary diseases and their potential clinical applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kauczor HU, Heussel CP, Mildenberger P et al (1996) What is it called? A formulation and glossary for the finding and understanding of results in HRCT of the lung (in German). Rofo 165:428–437

    PubMed  CAS  Google Scholar 

  2. Austin JH, Muller NL, Friedman PJ et al (1996) Glossary of terms for CT of the lungs: recommendations of the Nomenclature Committee of the Fleischner Society. Radiology 200:327–331

    PubMed  CAS  Google Scholar 

  3. Lucidarme O, Grenier PA, Cadi M et al (2000) Evaluation of air trapping at CT: comparison of continuous-versus suspended-expiration CT techniques. Radiology 216:768–772

    PubMed  CAS  Google Scholar 

  4. King GG, Muller NL, Whittall KP et al (2000) An analysis algorithm for measuring airway lumen and wall areas from high-resolution computed tomographic data. Am J Respir Crit Care Med 161:574–580

    PubMed  CAS  Google Scholar 

  5. Niimi A, Matsumoto H, Amitani R et al (2000) Airway wall thickness in asthma assessed by computed tomography. Relation to clinical indices. Am J Respir Crit Care Med 162:1518–1523

    PubMed  CAS  Google Scholar 

  6. Worthy SA, Muller NL, Hartman TE et al (1997) Mosaic attenuation pattern on thin-section CT scans of the lung: differentiation among infiltrative lung, airway, and vascular diseases as a cause. Radiology 205:465–470

    PubMed  CAS  Google Scholar 

  7. Stern EJ, Frank MS (1994) Small-airway diseases of the lungs: findings at expiratory CT. AJR 163:37–41

    PubMed  CAS  Google Scholar 

  8. Glazer CS, Rose CS, Lynch DA (2002) Clinical and radiologic manifestations of hypersensitivity pneumonitis. J Thorac Imaging 17:261–272

    Article  PubMed  Google Scholar 

  9. Kauczor HU, Hast J, Heussel CP et al (2000) Focal airtrapping at expiratory high-resolution CT: comparison with pulmonary function tests. Eur Radiol 10:1539–1546

    Article  PubMed  CAS  Google Scholar 

  10. Gotway MB, Lee ES, Reddy GP et al (2000) Low-dose, dynamic, expiratory thin-section CT of the lungs using a spiral CT scanner. J Thorac Imaging 15:168–172

    Article  PubMed  CAS  Google Scholar 

  11. Heussel CP, Hafner B, Lill J et al (2001) Paired inspiratory/expiratory spiral CT and continuous respiration cine CT in the diagnosis of tracheal instability. Eur Radiol 11:982–989

    Article  PubMed  CAS  Google Scholar 

  12. Ley S, Kreitner KF, Fink C et al (2004) Assessment of pulmonary hypertension by CT and MR imaging. Eur Radiol 14:359–368

    Article  PubMed  Google Scholar 

  13. Hiorns MP, Mayo JR (2002) Spiral computed tomography for acute pulmonary embolism. Can Assoc Radiol J 53:258–268

    PubMed  Google Scholar 

  14. Winer-Muram HT, Rydberg J, Johnson MS et al (2004) Suspected acute pulmonary embolism: evaluation with multi-detector row CT versus digital subtraction pulmonary arteriography. Radiology 233:806–815

    Article  PubMed  Google Scholar 

  15. Herzog P, Wildberger JE, Niethammer M et al (2003) CT perfusion imaging of the lung in pulmonary embolism. Acad Radiol 10:1132–1146

    Article  PubMed  Google Scholar 

  16. Foley WD, Haughton VM, Schmidt J et al (1978) Xenon contrast enhancement in computed body tomography. Radiology 129:219–220

    PubMed  CAS  Google Scholar 

  17. Bayat S, Le Duc G, Porra L et al (2001) Quantitative functional lung imaging with synchrotron radiation using inhaled xenon as contrast agent. Phys Med Biol 46:3287–3299

    Article  PubMed  CAS  Google Scholar 

  18. Tajik JK, Chon D, Won C et al (2002) Subsecond multisection CT of regional pulmonary ventilation. Acad Radiol 9:130–146

    Article  PubMed  Google Scholar 

  19. Hatabu H, Chen Q, Stock KW et al (1999) Fast magnetic resonance imaging of the lung. Eur J Radiol 29:114–132

    Article  PubMed  CAS  Google Scholar 

  20. Kauczor HU, Heussel CP, Schreiber WG et al (2001) New developments in MRI of the chest. Radiologe 41:279–287

    Article  PubMed  CAS  Google Scholar 

  21. Heussel CP, Sandner A, Voigtlander T et al (2002) Prospective feasibility study of chest X-ray vs. thoracic MRI in breath-hold technique at an open low-field scanner (in German). Rofo 174:854–861

    PubMed  CAS  Google Scholar 

  22. Fink C, Eichhorn J, Kiessling F et al (2003) Time-resolved multiphasic 3D MR angiography in the diagnosis of the pulmonary vascular system in children (in German). Rofo 175:929–935

    PubMed  CAS  Google Scholar 

  23. Kauczor HU, Hanke A, van Beek EJ (2002) Assessment of lung ventilation by MR imaging: current status and future perspectives. Eur Radiol 12:1962–1970

    PubMed  Google Scholar 

  24. Fink C, Ley S, Kauczor HU (2004) Radiologische diagnostik der lungenembolie. Radiologie Up 2 Date 1:17–32

    Google Scholar 

  25. Nikolaou K, Schoenberg SO, Brix G et al (2004) Quantification of pulmonary blood flow and volume in healthy volunteers by dynamic contrast-enhanced magnetic resonance imaging using a parallel imaging technique. Invest Radiol 39:537–545

    Article  PubMed  Google Scholar 

  26. Fink C, Bock M, Puderbach M et al (2003) Partially parallel three-dimensional magnetic resonance imaging for the assessment of lung perfusion—initial results. Invest Radiol 38:482–488

    Article  PubMed  Google Scholar 

  27. Hatabu H, Tadamura E, Levin DL et al (1999) Quantitative assessment of pulmonary perfusion with dynamic contrast-enhanced MRI. Magn Reson Med 42:1033–1038

    Article  PubMed  CAS  Google Scholar 

  28. Meaney JF, Weg JG, Chenevert TL et al (1997) Diagnosis of pulmonary embolism with magnetic resonance angiography. N Engl J Med 336:1422–1427

    Article  PubMed  CAS  Google Scholar 

  29. Fink C, Puderbach M, Bock M et al (2004) Regional lung perfusion: assessment with partially parallel three-dimensional MR imaging. Radiology 231:175–184

    Article  PubMed  Google Scholar 

  30. Amundsen T, Torheim G, Waage A et al (2000) Perfusion magnetic resonance imaging of the lung: characterization of pneumonia and chronic obstructive pulmonary disease. A feasibility study. J Magn Reson Imaging 12:224–231

    Article  PubMed  CAS  Google Scholar 

  31. Ohno Y, Hatabu H, Murase K et al (2004) Quantitative assessment of regional pulmonary perfusion in the entire lung using three-dimensional ultrafast dynamic contrast-enhanced magnetic resonance imaging: preliminary experience in 40 subjects. J Magn Reson Imaging 20:353–365

    Article  PubMed  Google Scholar 

  32. Schaefer JF, Vollmar J, Schick F, et al (2004) Solitary pulmonary nodules: dynamic contrast-enhanced MR imaging—perfusion differences in malignant and benign lesions. Radiology 232:544–553

    Article  PubMed  Google Scholar 

  33. Mai VM, Berr SS (1999) MR perfusion imaging of pulmonary parenchyma using pulsed arterial spin labeling techniques: FAIRER and FAIR. J Magn Reson Imaging 9:483–487

    Article  PubMed  CAS  Google Scholar 

  34. Rominger MB, Dinkel HP, Bachmann GF (2002) Comparison between fast MR flow quantification in breathhold technique in ascending aorta and pulmonary trunc with right and left ventricular cine-MRI for the assessment of stroke volumes in healthy volunteers (in German). Rofo 174:196–201

    PubMed  CAS  Google Scholar 

  35. Lotz J, Meier C, Leppert A et al (2002) Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics 22:651–671

    PubMed  Google Scholar 

  36. Ley S, Kreitner KF, Morgenstern I et al (2002) Bronchopulmonary shunts in patients with chronic thromboembolic pulmonary hypertension: evaluation with helical CT and MR imaging. AJR 179:1209–1215

    PubMed  Google Scholar 

  37. Suga K, Tsukuda T, Awaya H et al (1999) Impaired respiratory mechanics in pulmonary emphysema: evaluation with dynamic breathing MRI. J Magn Reson Imaging 10:510–520

    Article  PubMed  CAS  Google Scholar 

  38. Plathow C, Ley S, Fink C et al (2004) Evaluation of chest motion and volumetry during the breathing cycle by dynamic MRI in healthy subjects: comparison with pulmonary function tests. Invest Radiol 39:202–209

    Article  PubMed  Google Scholar 

  39. Montgomery AB, Paajanen H, Brasch RC et al (1987) Aerosolized gadolinium-DTPA enhances the magnetic resonance signal of extravascular lung water. Invest Radiol 22:377–381

    Article  PubMed  CAS  Google Scholar 

  40. Haage P, Karaagac S, Spuntrup E et al (2003) MR imaging of lung ventilation with aerosolized gadolinium-chelates (in German). Rofo 175:187–193

    PubMed  CAS  Google Scholar 

  41. Edelman RR, Hatabu H, Tadamura E et al (1996) Noninvasive assessment of regional ventilation in the human lung using oxygen-enhanced magnetic resonance imaging. Nat Med 2:1236–1239

    Article  PubMed  CAS  Google Scholar 

  42. Nakagawa T, Sakuma H, Murashima S et al (2001) Pulmonary ventilation-perfusion MR imaging in clinical patients. J Magn Reson Imaging 14:419–424

    Article  PubMed  CAS  Google Scholar 

  43. Muller CJ, Schwaiblmair M, Scheidler J et al (2002) Pulmonary diffusing capacity: assessment with oxygen-enhanced lung MR imaging preliminary findings. Radiology 222:499–506

    Article  PubMed  Google Scholar 

  44. Ohno Y, Hatabu H, Takenaka D et al (2002) Dynamic oxygen-enhanced MRI reflects diffusing capacity of the lung. Magn Reson Med 47:1139–1144

    Article  PubMed  Google Scholar 

  45. Jakob PM, Wang T, Schultz G et al (2004) Assessment of human pulmonary function using oxygen-enhanced T1 imaging in patients with cystic fibrosis. Magn Reson Med 51:1009–1016

    Article  PubMed  Google Scholar 

  46. Kauczor HU, Ebert M, Kreitner KF et al (1997) Imaging of the lungs using 3He MRI: preliminary clinical experience in 18 patients with and without lung disease. J Magn Reson Imaging 7:538–543

    Article  PubMed  CAS  Google Scholar 

  47. Schreiber WG, Weiler N, Kauczor HU et al (2000) Ultrafast MRI of lung ventilation using hyperpolarized helium-3 (in German). Rofo 172:129–133

    PubMed  CAS  Google Scholar 

  48. Lehmann F, Knitz F, Weiler N et al (2004) A software tool for analysis and quantification of regional pulmonary ventilation using dynamic hyperpolarised-(3)He-MRI (in German). Rofo 176:1399–1408

    PubMed  CAS  Google Scholar 

  49. Ley S, Zaporozhan J, Morbach A et al (2004) Functional evaluation of emphysema using diffusion-weighted 3Helium-magnetic resonance imaging, high-resolution computed tomography, and lung function tests. Invest Radiol 39:427–434

    Article  PubMed  Google Scholar 

  50. Altes TA, Froh D, Salerno M et al (2001) Hyperpolarized helium-3 MR imaging of lung ventilation changes following airway mucus clearance treatment in cystic fibrosis. Proceedings of the 9th Annual Scientific Meeting of the International Society of Magnetic Resonance in Medicine, Glasgow, Scotland, 21–27 April 2001

  51. Hansen M, Kauczor HU, Pascher EW et al (1996) The Swyer-James syndrome: its imaging with high-resolution computed tomography (in German). Rofo 165:499–501

    PubMed  CAS  Google Scholar 

  52. Bhalla M, Turcios N, Aponte V et al (1991) Cystic fibrosis: scoring system with thin-section CT. Radiology 179:783–788

    PubMed  CAS  Google Scholar 

  53. Helbich TH, Heinz-Peer G, Eichler I et al (1999) Cystic fibrosis: CT assessment of lung involvement in children and adults. Radiology 213:537–544

    PubMed  CAS  Google Scholar 

  54. van Beek EJ, Hill C, Woodhouse N et al (2005) Assessment of children with CF, comparing hyperpolarized 3-He MRI with Schwachman score, Chrispin-Norman score and spirometry. 1st World Congress of Thoracic Imaging and Diagnosis in Chest Disease, Florence, 2005

  55. van Beek E, Hill C, Woodhouse N et al (2004) Cystic fibrosis in children—comparison of HP 3-He MRI with chest radiographs and spirometry. Proceedings 90th Annual Scientific Meeting of the Radiological Society of North America, 2004

  56. Khalil A, Farres MT, Mangiapan G et al (2000) Pulmonary arteriovenous malformations. Chest 117:1399–1403

    Article  PubMed  CAS  Google Scholar 

  57. Kauczor H-U, Knopp M, Branscheid D et al (1993) Pulmonary sequestration: use of MR-angiography (in German). Aktuelle Radiol 3:120–122

    PubMed  CAS  Google Scholar 

  58. Kalden P, Kreitner KF, Voigtlander T et al (1998) Flow quantification of intracardiac shunt volumes using MR phase contrast technique in the breath holding phase (in German). Rofo 169:378–382

    PubMed  CAS  Google Scholar 

  59. Long FR, Castile RG (2001) Technique and clinical applications of full-inflation and end-exhalation controlled-ventilation chest CT in infants and young children. Pediatr Radiol 31:413–422

    Article  PubMed  CAS  Google Scholar 

  60. Fedullo PF, Tapson VF (2003) Clinical practice. The evaluation of suspected pulmonary embolism. N Engl J Med 349:1247–1256

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Puderbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puderbach, M., Kauczor, HU. Assessment of lung function in children by cross-sectional imaging: techniques and clinical applications. Pediatr Radiol 36, 192–204 (2006). https://doi.org/10.1007/s00247-005-0027-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-005-0027-8

Keywords

Navigation