Skip to main content

Advertisement

Log in

Fetal Echocardiographic Parameters and Surgical Outcomes in Congenital Left-Sided Cardiac Lesions

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

This study aimed to evaluate fetal echocardiographic parameters associated with neonatal intervention and single-ventricle palliation (SVP) in fetuses with suspected left-sided cardiac lesions. Initial fetal echocardiograms (1/2002–1/2017) were interpreted by the contemporary fetal cardiologist as coarctation of the aorta (COA), left heart hypoplasia (LHH), hypoplastic left heart syndrome (HLHS), mitral valve hypoplasia (MVH) ± stenosis, and aortic valve hypoplasia ± stenosis (AS). The cohort comprised 68 fetuses with suspected left-sided cardiac lesions (COA n = 15, LHH n = 9, HLHS n = 39, MVH n = 1, and AS n = 4). Smaller left ventricular (LV) length Z score, aortic valve Z score, ascending aorta Z score, and aorta/pulmonary artery ratio; left-to-right shunting at the foramen ovale; and retrograde flow in the aortic arch were associated with the need for neonatal intervention (p = 0.005–0.04). Smaller mitral valve (MV) Z score, LV length Z score, aortic valve Z score, ascending aorta Z score, aorta/pulmonary artery ratio, and LV ejection fraction, as well as higher tricuspid valve-to-MV (TV/MV) ratio, right ventricular-to-LV (RV/LV) length ratio, left-to-right shunting at the foramen ovale, abnormal pulmonary vein Doppler, absence of prograde aortic flow, and retrograde flow in the aortic arch were associated with SVP (p < 0.001–0.008). The strongest independent variable associated with SVP was RV/LV length ratio (stepwise logistical regression, p = 0.03); an RV/LV length ratio > 1.28 was associated with SVP with a sensitivity of 76% and specificity of 96% (AUC 0.90, p < 0.001). A fetal RV/LV length ratio of > 1.28 may be a useful threshold for identifying fetuses requiring SVP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friedberg MK, Silverman NH, Moon-Grady AJ, Tong E, Nourse J, Sorenson B, Lee J, Hornberger LK (2009) Prenatal detection of congenital heart disease. J Pediatr 155:26–31. https://doi.org/10.1016/j.jpeds.2009.01.050

    Article  PubMed  Google Scholar 

  2. Quartermain MD, Pasquali SK, Hill KD, Goldberg DJ, Huhta JC, Jacobs JP, Jacobs ML, Kim S, Ungerleider RM (2015) Variation in prenatal diagnosis of congenital heart disease in infants. Pediatrics 136:e378–e385. https://doi.org/10.1542/peds.2014-3783

    Article  PubMed  PubMed Central  Google Scholar 

  3. Freud LR, Moon-Grady A, Escobar-Diaz MC, Gotteiner NL, Young LT, McElhinney DB, Tworetzky W (2015) Low rate of prenatal diagnosis among neonates with critical aortic stenosis: insight into the natural history in utero. Ultrasound Obstet Gynecol 45:326–332. https://doi.org/10.1002/uog.14667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marek J, Tomek V, Skovránek J, Povysilová V, Samánek M (2011) Prenatal ultrasound screening of congenital heart disease in an unselected national population: a 21-year experience. Heart 97:124–130. https://doi.org/10.1136/hrt.2010.206623

    Article  PubMed  Google Scholar 

  5. Khoshnood B, De Vigan C, Vodovar V, Goujard J, Lhomme A, Bonnet D, Goffinet F (2005) Trends in prenatal diagnosis, pregnancy termination, and perinatal mortality of newborns with congenital heart disease in France, 1983–2000: a population-based evaluation. Pediatrics 115:95–101. https://doi.org/10.1542/peds.2004-0516

    Article  PubMed  Google Scholar 

  6. Chew C, Halliday JL, Riley MM, Penny DJ (2007) Population-based study of antenatal detection of congenital heart disease by ultrasound examination. Ultrasound Obstet Gynecol 29:619–624. https://doi.org/10.1002/uog.4023

    Article  CAS  PubMed  Google Scholar 

  7. Khoo NS, Van Essen P, Richardson M, Robertson T (2008) Effectiveness of prenatal diagnosis of congenital heart defects in South Australia: a population analysis 1999–2003. Aust N Z J Obstet Gynaecol 48:559–563. https://doi.org/10.1111/j.1479-828X.2008.00915.x

    Article  PubMed  Google Scholar 

  8. Kipps AK, Feuille C, Azakie A, Hoffman JIE, Tabbutt S, Brook MM, Moon-Grady AJ (2011) Prenatal diagnosis of hypoplastic left heart syndrome in current era. Am J Cardiol 108:421–427. https://doi.org/10.1016/j.amjcard.2011.03.065

    Article  PubMed  Google Scholar 

  9. Levy DJ, Pretorius DH, Rothman A, Gonzales M, Rao C, Nunes ME, Bendelstein J, Mehalek K, Thomas A, Nehlsen C, Ehr J, Burchette RJ, Sklansky MS (2013) Improved prenatal detection of congenital heart disease in an integrated health care system. Pediatr Cardiol 34:670–679. https://doi.org/10.1007/s00246-012-0526-y

    Article  PubMed  Google Scholar 

  10. Gardiner HM, Kovacevic A, van der Heijden LB, Pfeiffer PW, Franklin RC, Gibbs JL, Averiss IE, Larovere JM (2014) Prenatal screening for major congenital heart disease: assessing performance by combining national cardiac audit with maternity data. Heart 100:375–382. https://doi.org/10.1136/heartjnl-2013-304640

    Article  PubMed  Google Scholar 

  11. Morris SA, Ethen MK, Penny DJ, Canfield MA, Minard CG, Fixler DE, Nembhard WN (2014) Prenatal diagnosis, birth location, surgical center, and neonatal mortality in infants with hypoplastic left heart syndrome. Circulation 129:285–292. https://doi.org/10.1161/CIRCULATIONAHA.113.003711

    Article  PubMed  Google Scholar 

  12. McElhinney DB, Marshall AC, Wilkins-Haug LE, Brown DW, Benson CB, Silva V, Marx GR, Mizrahi-Arnaud A, Lock JE, Tworetzky W (2009) Predictors of technical success and postnatal biventricular outcome after in utero aortic VALVULOPLASTY for aortic stenosis with evolving hypoplastic left heart syndrome. Circulation 120:1482–1490. https://doi.org/10.1161/CIRCULATIONAHA.109.848994

    Article  PubMed  PubMed Central  Google Scholar 

  13. Blaufox AD, Lai WW, Lopez L, Nguyen K, Griepp RB, Parness IA (1998) Survival in neonatal biventricular repair of left-sided cardiac obstructive lesions associated with hypoplastic left ventricle. Am J Cardiol 82:1138–1140-A10. https://doi.org/10.1016/S0002-9149(98)00576-1

    Article  CAS  PubMed  Google Scholar 

  14. Rhodes LA, Colan SD, Perry SB, Jonas RA, Sanders SP (1991) Predictors of survival in neonates with critical aortic stenosis. Circulation 84:2325–2335. https://doi.org/10.1161/01.CIR.84.6.2325

    Article  CAS  PubMed  Google Scholar 

  15. Hickey EJ, Caldarone CA, Blackstone EH, Lofland GK, Yeh T, Pizarro C, Tchervenkov CI, Pigula F, Overman DM, Jacobs ML, McCrindle BW, Congenital Heart Surgeons’ Society (2007) Critical left ventricular outflow tract obstruction: the disproportionate impact of biventricular repair in borderline cases. J Thorac Cardiovasc Surg 134:1429–1436. https://doi.org/10.1016/j.jtcvs.2007.07.052

    Article  PubMed  Google Scholar 

  16. Tani LY, Minich L, Pagotto LT, Shaddy RE (1999) Left heart hypoplasia and neonatal aortic arch obstruction: is the Rhodes left ventricular adequacy score applicable? J Thorac Cardiovasc Surg 118:81–86. https://doi.org/10.1016/S0022-5223(99)70144-3

    Article  CAS  PubMed  Google Scholar 

  17. Rychik J, Ayres N, Cuneo B, Gotteiner N, Hornberger L, Spevak PJ, Van Der Veld M (2004) American Society of Echocardiography guidelines and standards for performance of the fetal echocardiogram. J Am Soc Echocardiogr 17:803–810. https://doi.org/10.1016/j.echo.2004.04.011

    Article  PubMed  Google Scholar 

  18. Tan J, Silverman NH, Hoffman JI, Villegas M, Schmidt KG (1992) Cardiac dimensions determined by cross-sectional echocardiography in the normal human fetus from 18 weeks to term. Am J Cardiol 70:1459–1467. https://doi.org/10.1016/0002-9149(92)90300-N

    Article  CAS  PubMed  Google Scholar 

  19. Sharland GK, Allan LD (1992) Normal fetal cardiac measurements derived by cross-sectional echocardiography. Ultrasound Obstet Gynecol 2:175–81. https://doi.org/10.1046/j.1469-0705.1992.02030175.x

    Article  CAS  PubMed  Google Scholar 

  20. Roman KS, Fouron J-C, Nii M, Smallhorn JF, Chaturvedi R, Jaeggi ET (2007) Determinants of outcome in fetal pulmonary valve stenosis or atresia with intact ventricular septum. Am J Cardiol 99:699–703. https://doi.org/10.1016/j.amjcard.2006.09.120

    Article  PubMed  Google Scholar 

  21. Salomon LJ, Alfirevic Z, Berghella V, Bilardo C, Hernandez-Andrade E, Johnsen SL, Kalache K, Leung KY, Malinger G, Munoz H, Prefumo F, Toi A, Lee W (2011) Practice guidelines for performance of the routine mid-trimester fetal ultrasound scan. Ultrasound Obstet Gynecol 37:116–126. https://doi.org/10.1002/uog.8831

    Article  CAS  PubMed  Google Scholar 

  22. Hofstaetter C, Hansmann M, Eik-Nes SH, Huhta JC, Luther SL (2006) A cardiovascular profile score in the surveillance of fetal hydrops. J Matern Fetal Neonatal Med 19:407–413. https://doi.org/10.1080/14767050600682446

    Article  PubMed  Google Scholar 

  23. Ebbing C, Rasmussen S, Kiserud T (2007) Middle cerebral artery blood flow velocities and pulsatility index and the cerebroplacental pulsatility ratio: longitudinal reference ranges and terms for serial measurements. Ultrasound Obstet Gynecol 30:287–296. https://doi.org/10.1002/uog.4088

    Article  CAS  PubMed  Google Scholar 

  24. Hadlock FP, Deter RL, Harrist RB, Park SK (1984) Estimating fetal age: computer-assisted analysis of multiple fetal growth parameters. Radiology 152:497–501. https://doi.org/10.1148/radiology.152.2.6739822

    Article  CAS  PubMed  Google Scholar 

  25. Krishnan A, Pike JI, McCarter R, Fulgium AL, Wilson E, Donofrio MT, Sable CA (2016) Predictive models for normal fetal cardiac structures. J Am Soc Echocardiogr 29:1197–1206. https://doi.org/10.1016/j.echo.2016.08.019

    Article  PubMed  Google Scholar 

  26. Colan SD (2016) Normal echocardiographic values for cardiovascular structures. In: Lai WW, Mertens LL, Cohen MS, Geva T (eds) Echocardiography in pediatric and congenital heart disease: from fetus to adult. Wiley: Oxford, 2016; 883–901

    Chapter  Google Scholar 

  27. Sluysmans T, Colan SD (2016) Structural measurements and adjustments for growth. In: Lai WW, Mertens LL, Cohen MS, Geva T (eds) Echocardiography in pediatric and congenital heart disease: from fetus to adult. Wiley, Oxford, pp 61–72

    Chapter  Google Scholar 

  28. Jowett V, Aparicio P, Santhakumaran S, Seale A, Jicinska H, Gardiner HM (2012) Sonographic predictors of surgery in fetal coarctation of the aorta. Ultrasound Obstet Gynecol 40:47–54. https://doi.org/10.1002/uog.11161

    Article  CAS  PubMed  Google Scholar 

  29. Matsui H, Mellander M, Roughton M, Jicinska H, Gardiner HM (2008) Morphological and physiological predictors of fetal aortic coarctation. Circulation 118:1793–1801. https://doi.org/10.1161/CIRCULATIONAHA.108.787598

    Article  PubMed  Google Scholar 

  30. Bolin E, Watrin C, Garuba O, Altman C, Ayres N, Morris S (2013) Abstract 15552: Risk factors for postnatal surgery in the fetus with borderline small left heart. Circulation 128:A15552–A15562

    Google Scholar 

  31. Pitkänen OM, Hornberger LK, Miner SES, Mondal T, Smallhorn JF, Jaeggi E, Nield LE (2006) Borderline left ventricles in prenatally diagnosed atrioventricular septal defect or double outlet right ventricle: echocardiographic predictors of biventricular repair. Am Heart J 152:163.e1–7. https://doi.org/10.1016/j.ahj.2006.04.018

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsay A. Edwards.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edwards, L.A., Arunamata, A., Maskatia, S.A. et al. Fetal Echocardiographic Parameters and Surgical Outcomes in Congenital Left-Sided Cardiac Lesions. Pediatr Cardiol 40, 1304–1313 (2019). https://doi.org/10.1007/s00246-019-02155-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-019-02155-7

Keywords

Navigation