Skip to main content

Advertisement

Log in

Childhood Obesity Increases Left-Ventricular Mass Irrespective of Blood Pressure Status

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Adults with a left-ventricular mass index (LVMI) in grams normalized to height in meters2.7 (LVMI g/m2.7) >51 g/m2.7 are more prone to cardiovascular and cerebrovascular events. We delineated the odds for cardiac structural sequelae amongst apparently normal white and African-American (AA) children with varying body mass indices (BMI) and office blood pressures. A total of 2,071 children with normal echocardiograms were categorized into risk groups based on BMI and systolic blood pressures (SBPs). Predictors of cardiac sequelae examined were age, sex, race, and z-scores (z) for BMI, SBP, and diastolic blood pressure. Cardiac sequelae measures included (LVMI g/m2.7) >51 g/m2.7, (LVMI) (g/m2.7) z, left atrial size (LAht) (mm) z, and relative wall thickness z. Mean age was 14 ± 2 years with 56 % being male and 13 % being AA. Children were divided into “controls” (n = 1,059) and risk groups based on BMI and SBP. Odds ratio for LVMI (g/m2.7) > 51.0 g/m2.7, varied from 5.3 up to 8.5 in children with increased BMI. Both increased BMI and SBP z were associated with increased LVMI (g/m2.7) z; however, BMI z had a stronger association. Increased BMI z and AA race were associated with greater LAht (mm) z. AA controls had a nonsignificantly increased LVMI z and a significantly increased LAht (mm) and RWT z. Being overweight or obese is associated with cardiac sequelae in children to the extent known to be associated with adverse outcomes in adults. Healthy AA children have unique cardiac structural differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ayer JG, Sholler GF, Celermajer DS (2010) Left atrial size increases with body mass index in children. Int J Cardiol 141:61–67

    Article  PubMed  Google Scholar 

  2. Baker JL, Olsen LW, Serenson TIA et al (2007) Childhood body-mass index and the risk of coronary heart disease in adulthood. N Engl J Med 367:2329–2337

    Article  Google Scholar 

  3. Barouch LA, Berkowitz DE, Harrison RW et al (2003) Disruption of leptin signaling contributes to cardiac hypertrophy independently of body weight in mice. Circulation 108:754–759

    Article  CAS  PubMed  Google Scholar 

  4. Bibbins-Domingo K, Coxson P, Pletcher et al (2007) Adolescent overweight and future adult coronary heart disease. N Engl J Med 357:2371–2379

    Article  CAS  PubMed  Google Scholar 

  5. Clark LT, Ferdinand KC, Flack JM et al (2001) Coronary heart disease in African Americans. Heart Dis 3(2):97–108

    Article  CAS  PubMed  Google Scholar 

  6. Crowley DI, Khoury PR, Urbina EM, et al. (2011) Cardiovascular impact of the pediatric obesity epidemic: higher left ventricular mass is related to higher body mass index. J Pediatr 158(5):709–714.e1. 2011;158(5): 695–696

    Google Scholar 

  7. de Simone G, Mureddu GF, Greco R et al (1997) Relations of left ventricular geometry and function to body composition in children with high casual blood pressure. Hypertension 30:377–382

    Article  PubMed  Google Scholar 

  8. DeSimone G, Devereux RB, Daniels SR et al (1995) Effect of growth variability of left ventricular mass: assessment of allometric signals in adults and children and their capacity to predict cardiovascular risk. J Am Coll Cardiol 25:1056–1062

    Article  CAS  Google Scholar 

  9. Dhuper S, Abdullah RA, Weichbrod L et al (2011) Association of obesity and hypertension with left ventricular geometry and function in children and adolescents. Obesity 19:128–133

    Article  PubMed  Google Scholar 

  10. Engeli S, Negrel R, Sharma AM (2000) Physiology and pathophysiology of the adipose tissue renin-angiotensin system. Hypertension 35:1270–1277

    Article  CAS  PubMed  Google Scholar 

  11. Foppa M, Duncan B, Rohde L (2005) Echocardiographic-based left ventricular mass estimation. How should we define hypertrophy? Cardiovasc Ultrasound 3:17

    Article  PubMed Central  PubMed  Google Scholar 

  12. Franks PW, Hanson RL, Knowler WC et al (2010) Childhood obesity, other cardiovascular risk factors, and premature death. N Engl J Med 362:485–493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Friberg P, Allansdotter-Johnsson A, Ambring A et al (2004) Increased left ventricular mass in obese adolescents. Eur Heart J 25:987–992

    Article  CAS  PubMed  Google Scholar 

  14. Hanevold C, Waller J, Daniels S et al (2004) The effects of obesity, gender, and ethnic group on left ventricular hypertrophy and geometry in hypertensive children: a collaborative study of the International Pediatric Hypertension Association. Pediatrics 113:328

    Article  PubMed  Google Scholar 

  15. Jin RZ, Donaghue KC, Fairchild JM et al (2001) Comparison of Dinamap 8100 with sphygmomanometer blood pressure measurement in a prepubertal diabetes cohort. J Paediatr Child Health 37:545–549

    Article  CAS  PubMed  Google Scholar 

  16. Kannel WB (1988) Contributions of the Framingham study to the conquest of coronary artery disease. Am J Cardiol 62(16):1109–1112

    Article  CAS  PubMed  Google Scholar 

  17. Khoury PR, Mitsnefes M, Daniels SR et al (2009) Age-specific reference intervals for indexed left ventricular mass in children. J Am Soc Echocardiogr 22:709–714

    Article  PubMed  Google Scholar 

  18. Kizer JR, Bella JN, Palmieri V et al (2006) Left atrial diameter as an independent predictor of first clinical cardiovascular events in middle-aged and elderly adults: the strong heart study (SHS). Am Heart J 151:412–418

    Article  PubMed  Google Scholar 

  19. Lauer MS, Anderson KM, Kannel WB et al (1991) The impact of obesity on left ventricular mass and geometry: the framingham heart study. JAMA 266:231–236

    Article  CAS  PubMed  Google Scholar 

  20. Lemire F, Tajik AJ, Hagler DJ (1976) Asymmetric left atrial enlargement: an echocardiographic observation. Chest 69(6):779–781

    Article  CAS  PubMed  Google Scholar 

  21. MacMahon SW, Wilcken DEL, MacDonald GJ (1986) The effect of weight reduction on left ventricular mass: a randomized controlled trial in young, overweight hypertensive patients. N Engl J Med 314:334–339

    Article  CAS  PubMed  Google Scholar 

  22. Marcus R, Krause L, Weder AB et al (1994) Sex-specific determinants of increased left ventricular mass in the tecumseh blood pressure study. Circulation 90:928–936

    Article  CAS  PubMed  Google Scholar 

  23. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents (2004) The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 114:555–576

    Article  Google Scholar 

  24. Putte-Katier N, Rooman R, Haas L et al (2008) Early cardiac abnormalities in obese children: importance of obesity per se versus associated cardiovascular risk factors. Pediatr Res 64:205–209

    Article  PubMed  Google Scholar 

  25. Roger VL, Go AS, Lloyd-Jones DM et al (2012) American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2012) Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125:e2–e220

    Article  PubMed Central  PubMed  Google Scholar 

  26. Schlaich MP, Kaye DM, Lambert E et al (2003) Relation between cardiac sympathetic activity and hypertensive left ventricular hypertrophy. Circulation 108:560–565

    Article  PubMed  Google Scholar 

  27. Sivanandanam S, Sinaiko AR, Jacobs DR et al (2006) Relation of increase in adiposity to increase in left ventricular mass from childhood to young adulthood. Am J Cardiol 98:411–415

    Article  Google Scholar 

  28. Stabouli S, Kotsis V, Rizos Z et al (2009) Left ventricular mass in normotensive, prehypertensive, and hypertensive children and adolescents. Pediatr Nephrol 24:1545

    Article  PubMed  Google Scholar 

  29. Stabouli S, Kotsis V, Rizos Z, et al. (2009) Left ventricular mass in normotensive, prehypertensive, and hypertensive children and adolescents. Pediatr Nephrol 24:1545–1551 “A SAS Program for the CDC Growth Charts” (2012, January 12) Growth chart training. Centers for Disease Control and Prevention 27 June 2011. Available at: http://www.cdc.gov/nccdphp/dnpao/growthcharts/resources/sas.htm. Accessed 21 Dec 2011

    Google Scholar 

  30. Steinberger J, Jacobs DR, Moran A et al (2002) Relation of insulin resistance and body composition to left ventricular mass in children. Am J Cardiol 90:1177–1180

    Article  CAS  PubMed  Google Scholar 

  31. Verdecchia P, Reboldi G, Schillaci G et al (1999) Circulating insulin and insulin growth factor-1 are independent determinants of left ventricular mass and geometry in essential hypertension. Circulation 100:1802–1807

    Article  CAS  PubMed  Google Scholar 

  32. Writing Group Members (2009) Heart disease and stroke statistics update. Circulation 119(3):e21

    Article  Google Scholar 

Download references

Acknowledgments

Sarah Morrison Medical Student Research Grant 2010, University of Missouri, Kansas City-School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Ramlogan.

Appendices

Appendices

Appendix 1

See Table 2.

Table 2 Controls and risk groups

Appendix 2

Devereux equation: LVMI = (0.81[1.04 (interventricular septal thickness + posterior wall thickness + LV end-diastolic dimension)3 − (LV end-diastolic dimension)3] + 0.6 LVMI (g/m2.7).

Appendix 3

See Fig. 3.

Fig. 3
figure 3

LVMI (g/m2.7) z, LAht (mm) z, and RWT z distributions in controls

Appendix 4

See Table 3.

Table 3 LVMI (g/m2.7) and LAht (mm) percentiles for controls

Appendix 5

See Tables 4, 5, and 6.

Table 4 Univariate and multivariate analysis for LVMI (g/m2.7) z
Table 5 Univariate and multivariate analysis for LAht (mm) z
Table 6 Univariate and multivariate analysis for RWT z

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharod, A.M., Ramlogan, S.R., Kumar, S. et al. Childhood Obesity Increases Left-Ventricular Mass Irrespective of Blood Pressure Status. Pediatr Cardiol 35, 353–360 (2014). https://doi.org/10.1007/s00246-013-0782-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-013-0782-5

Keywords

Navigation