Skip to main content
Log in

An Optimal Control Problem for the Navier–Stokes Equations with Point Sources

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We analyze, in two dimensions, an optimal control problem for the Navier–Stokes equations where the control variable corresponds to the amplitude of forces modeled as point sources; control constraints are also considered. This particular setting leads to solutions to the state equation exhibiting reduced regularity properties. We operate under the framework of Muckenhoupt weights, Muckenhoupt-weighted Sobolev spaces, and the corresponding weighted norm inequalities and derive the existence of optimal solutions and first- and, necessary and sufficient, second-order optimality conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aimar, H., Carena, M., Durán, R., Toschi, M.: Powers of distances to lower dimensional sets as Muckenhoupt weights. Acta Math. Hungar. 143(1), 119–137 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Allendes, A., Otárola, E., Rankin, R., Salgado, A.J.: An a posteriori error analysis for an optimal control problem with point sources. ESAIM Math. Model. Numer. Anal. 52(5), 1617–1650 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Antil, H., Otárola, E., Salgado, A.J.: Some applications of weighted norm inequalities to the error analysis of PDE-constrained optimization problems. IMA J. Numer. Anal. 38(2), 852–883 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Atkinson, K., Han, W.: Theoretical Numerical Analysis. Texts in Applied Mathematics, vol. 39, 2nd edn. Springer, New York (2005). (a functional analysis framework)

    Google Scholar 

  5. Bermúdez, A., Gamallo, P., Rodríguez, R.: Finite element methods in local active control of sound. SIAM J. Control. Optim. 43(2), 437–465 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)

    MATH  Google Scholar 

  7. Casas, E., Herzog, R., Wachsmuth, G.: Optimality conditions and error analysis of semilinear elliptic control problems with \(L^1\) cost functional. SIAM J. Optim. 22(3), 795–820 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Casas, E., Kunisch, K.: Optimal control of the two-dimensional stationary Navier–Stokes equations with measure valued controls. SIAM J. Control. Optim. 57(2), 1328–1354 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Casas, E., Mateos, M., Raymond, J.-P.: Error estimates for the numerical approximation of a distributed control problem for the steady-state Navier–Stokes equations. SIAM J. Control. Optim. 46(3), 952–982 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Casas, E., Tröltzsch, F.: Second order optimality conditions and their role in PDE control. Jahresber. Dtsch. Math.-Ver. 117(1), 3–44 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Clason, C., Kunisch, K.: A duality-based approach to elliptic control problems in non-reflexive Banach spaces. ESAIM Control Optim. Calc. Var. 17(1), 243–266 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Duoandikoetxea, J.: Fourier Analysis. Graduate Studies in Mathematics, vol. 29. American Mathematical Society, Providence, RI (2001). Translated and revised from the 1995 Spanish original by David Cruz-Uribe

  13. Durán, R.G., Otárola, E., Salgado, A.J.: Stability of the Stokes projection on weighted spaces and applications. Math. Comput. 89(324), 1581–1603 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Fabes, E.B., Kenig, C.E., Serapioni, R.P.: The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differ. Equ. 7(1), 77–116 (1982)

    MathSciNet  MATH  Google Scholar 

  15. Farwig, R., Sohr, H.: Weighted \(L^q\)-theory for the Stokes resolvent in exterior domains. J. Math. Soc. Jpn. 49(2), 251–288 (1997)

    MATH  Google Scholar 

  16. Fuica, F., Otárola, E., Quero, D.: Error estimates for optimal control problems involving the Stokes system and Dirac measures. Appl. Math. Optim. 84(2), 1717–1750 (2021)

    MathSciNet  MATH  Google Scholar 

  17. Gong, W., Wang, G., Yan, N.: Approximations of elliptic optimal control problems with controls acting on a lower dimensional manifold. SIAM J. Control. Optim. 52(3), 2008–2035 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Haroske, D.D., Skrzypczak, L.: Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights, II. General weights. Ann. Acad. Sci. Fenn. Math. 36(1), 111–138 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Unabridged Republication of the 1993 Original. Dover Publications Inc, Mineola, NY (2006)

    MATH  Google Scholar 

  20. Hernández, E., Otárola, E.: A locking-free FEM in active vibration control of a Timoshenko beam. SIAM J. Numer. Anal. 47(4), 2432–2454 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Lepe, F., Otárola, E., Quero, D.: Error estimates for FEM discretizations of the Navier–Stokes equations with Dirac measures. J. Sci. Comput. 87(3), 23 (2021)

    MathSciNet  MATH  Google Scholar 

  22. Luenberger, D.G.: Linear and Nonlinear Programming, 2nd edn. Kluwer Academic Publishers, Boston, MA (2003)

    MATH  Google Scholar 

  23. Mitrea, D., Mitrea, I.: On the regularity of Green functions in Lipschitz domains. Commun. Partial Differ. Equ. 36(2), 304–327 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Mitrea, M., Wright, M.: Boundary Value Problems for the Stokes System in Arbitrary Lipschitz Domains. Astérisque, vol. 344, p. viii+241 (2012)

  25. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)

    MathSciNet  MATH  Google Scholar 

  26. Otárola, E.: Semilinear optimal control with Dirac measures. arXiv:2112.07114

  27. Otárola, E., Salgado, A.J.: The Poisson and Stokes problems on weighted spaces in Lipschitz domains and under singular forcing. J. Math. Anal. Appl. 471(1–2), 599–612 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Otárola, E., Salgado, A.J.: A weighted setting for the stationary Navier Stokes equations under singular forcing. Appl. Math. Lett. 99, 105933, 7 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Peralta, G.: Optimal Borel measure controls for the two-dimensional stationary Boussinesq system. ESAIM Control Optim. Calc. Var. 28, 33 (2022)

    MathSciNet  MATH  Google Scholar 

  30. Stadler, G.: Elliptic optimal control problems with \(L^1\)-control cost and applications for the placement of control devices. Comput. Optim. Appl. 44(2), 159–181 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Tröltzsch, F.: Optimal Control of Partial Differential Equations. Graduate Studies in Mathematics, vol. 112. American Mathematical Society, Providence, RI (2010). Theory, Methods and Applications, Translated from the 2005 German original by Jürgen Sprekels

  32. Turesson, B.O.: Nonlinear Potential Theory and Weighted Sobolev Spaces. Lecture Notes in Mathematics, vol. 1736. Springer-Verlag, Berlin (2000)

    MATH  Google Scholar 

  33. Wachsmuth, G., Wachsmuth, D.: Convergence and regularization results for optimal control problems with sparsity functional. ESAIM Control Optim. Calc. Var. 17(3), 858–886 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

FF is supported by UTFSM through Beca de Mantención. FL is partially supported by DIUBB through project 2120173 GI/C Universidad del Bío–Bío and ANID through FONDECYT grant 11200529. EO is partially supported by ANID through FONDECYT grant 1220156. DQ is partially supported by ANID/Subdirección del Capital Humano/Doctorado Nacional/2021–21210988.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Otárola.

Additional information

Communicated by Michael Hinze.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuica, F., Lepe, F., Otárola, E. et al. An Optimal Control Problem for the Navier–Stokes Equations with Point Sources. J Optim Theory Appl 196, 590–616 (2023). https://doi.org/10.1007/s10957-022-02148-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-022-02148-2

Keywords

Mathematics Subject Classification

Navigation