Skip to main content
Log in

Linear convergence of the generalized Douglas–Rachford algorithm for feasibility problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we study the generalized Douglas–Rachford algorithm and its cyclic variants which include many projection-type methods such as the classical Douglas–Rachford algorithm and the alternating projection algorithm. Specifically, we establish several local linear convergence results for the algorithm in solving feasibility problems with finitely many closed possibly nonconvex sets under different assumptions. Our findings not only relax some regularity conditions but also improve linear convergence rates in the literature. In the presence of convexity, the linear convergence is global.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauschke, H.H., Bello Cruz, J.Y., Nghia, T.T.A., Phan, H.M., Wang, X.: The rate of linear convergence of the Douglas–Rachford algorithm for subspaces is the cosine of the Friedrichs angle. J. Approx. Theory 185, 63–79 (2014)

    Article  MathSciNet  Google Scholar 

  2. Bauschke, H.H., Borwein, J.M.: Dykstra’s alternating projection algorithm for two sets. J. Approx. Theory 79(3), 418–443 (1994)

    Article  MathSciNet  Google Scholar 

  3. Bauschke, H.H., Borwein, J.M.: On projections algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996)

    Article  MathSciNet  Google Scholar 

  4. Bauschke, H.H., Borwein, J.M., Li, W.: Strong conical hull intersection property, bounded linear regularity, Jameson’s property (G), and error bounds in convex optimization. Math. Program. 86(1), 135–160 (1999)

    Article  MathSciNet  Google Scholar 

  5. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd edn. Springer, New York (2017)

    Book  Google Scholar 

  6. Bauschke, H.H., Combettes, P.L., Luke, D.R.: Finding best approximation pairs relative to two closed convex sets in Hilbert spaces. J. Approx. Theory 127, 178–192 (2004)

    Article  MathSciNet  Google Scholar 

  7. Bauschke, H.H., Dao, M.N.: On the finite convergence of the Douglas–Rachford algorithm for solving (not necessarily convex) feasibility problems in Euclidean spaces. SIAM J. Optim. 27(1), 507–537 (2017)

    Article  MathSciNet  Google Scholar 

  8. Bauschke, H.H., Dao, M.N., Moursi, W.M.: The Douglas–Rachford algorithm in the affine-convex case. Oper. Res. Lett. 44(3), 379–382 (2016)

    Article  MathSciNet  Google Scholar 

  9. Bauschke, H.H., Dao, M.N., Noll, D., Phan, H.M.: On Slater’s condition and finite convergence of the Douglas–Rachford algorithm for solving convex feasibility problems in Euclidean spaces. J. Glob. Optim. 65(2), 329–349 (2016)

    Article  MathSciNet  Google Scholar 

  10. Bauschke, H.H., Dao, M.N., Noll, D., Phan, H.M.: Proximal point algorithm, Douglas–Rachford algorithm and alternating projections: a case study. J. Convex Anal. 23(1), 237–261 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and the method of alternating projections: theory. Set-Valued Var. Anal 21(3), 431–473 (2013)

    Article  MathSciNet  Google Scholar 

  12. Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and the method of alternating projections: applications. Set-Valued Var. Anal. 21(3), 475–501 (2013)

    Article  MathSciNet  Google Scholar 

  13. Bauschke, H.H., Moursi, W.M.: On the Douglas–Rachford algorithm. Math. Program. 164(1–2), 263–284 (2017)

    Article  MathSciNet  Google Scholar 

  14. Bauschke, H.H., Noll, D., Phan, H.M.: Linear and strong convergence of algorithms involving averaged nonexpansive operators. J. Math. Anal. Appl. 421(1), 1–20 (2015)

    Article  MathSciNet  Google Scholar 

  15. Bauschke, H.H., Phan, H.M., Wang, X.: The method of alternating relaxed projections for two nonconvex sets. Vietnam J. Math. 42(4), 421–450 (2014)

    Article  MathSciNet  Google Scholar 

  16. Borwein, J.M., Sims, B., Tam, M.K.: Norm convergence of realistic projection and reflection methods. Optimization 64(1), 161–178 (2015)

    Article  MathSciNet  Google Scholar 

  17. Borwein, J.M., Tam, M.K.: A cyclic Douglas–Rachford iteration scheme. J. Optim. Theory Appl. 160(1), 1–29 (2014)

    Article  MathSciNet  Google Scholar 

  18. Bregman, L.M.: The method of successive projection for finding a common point of convex sets. Sov. Math. Dokl. 6, 688–692 (1965)

    MATH  Google Scholar 

  19. Dao, M.N., Phan, H.M.: Linear convergence of projection algorithms. Math. Oper. Res. (2018). arXiv:1609.00341

  20. Dao, M.N., Tam, M.K.: A Lyapunov-type approach to convergence of the Douglas–Rachford algorithm (2017). arXiv:1706.04846

  21. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)

    Article  MathSciNet  Google Scholar 

  22. Drusvyatskiy, D., Ioffe, A.D., Lewis, A.S.: Transversality and alternating projections for nonconvex sets. Found. Comput. Math. 15(6), 1637–1651 (2015)

    Article  MathSciNet  Google Scholar 

  23. Elser, V., Rankenburg, I., Thibault, P.: Searching with iterated maps. Proc. Natl. Acad. Sci. USA 104(2), 418–423 (2007)

    Article  MathSciNet  Google Scholar 

  24. Hesse, R., Luke, D.R.: Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems. SIAM J. Optim. 23(4), 2397–2419 (2013)

    Article  MathSciNet  Google Scholar 

  25. Kruger, A.Y.: About regularity of collections of sets. Set-Valued Anal. 14(2), 187–206 (2006)

    Article  MathSciNet  Google Scholar 

  26. Lewis, A.S., Luke, D.R., Malick, J.: Local linear convergence for alternating and averaged nonconvex projections. Found. Comput. Math. 9(4), 485–513 (2009)

    Article  MathSciNet  Google Scholar 

  27. Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)

    Article  MathSciNet  Google Scholar 

  28. Luke, D.R.: Finding best approximation pairs relative to a convex and prox-regular set in a Hilbert space. SIAM J. Optim. 19(2), 714–739 (2008)

    Article  MathSciNet  Google Scholar 

  29. Luke, D.R., Thao, N.H., Tam, M.K.: Quantitative convergence analysis of iterated expansive, set-valued mappings. Math. Oper. Res. (2017). arXiv:1605.05725

  30. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I. Springer, Berlin (2006)

    Google Scholar 

  31. Noll, D., Rondepierre, A.: On local convergence of the method of alternating projections. Found. Comput. Math. 16(2), 425–455 (2016)

    Article  MathSciNet  Google Scholar 

  32. Phan, H.M.: Linear convergence of the Douglas–Rachford method for two closed sets. Optimization 65(2), 369–385 (2016)

    Article  MathSciNet  Google Scholar 

  33. Robinson, S.M.: Some continuity properties of polyhedral multifunctions. Math. Program. Stud. 14, 206–214 (1981)

    Article  MathSciNet  Google Scholar 

  34. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

  35. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  Google Scholar 

  36. Sontag, E.D.: Remarks on piecewise-linear algebra. Pac. J. Math. 98(1), 183–201 (1982)

    Article  MathSciNet  Google Scholar 

  37. Svaiter, B.F.: On weak convergence of the Douglas–Rachford method. SIAM J. Control Optim. 49(1), 280–287 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the editors and the referees for their constructive comments. MND was partially supported by the Australian Research Council (ARC) under Discovery Project 160101537 and by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant 101.02-2016.11. This work was essentially completed during MND’s visit to UMass Lowell in September 2017 to whom he acknowledges the hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh N. Dao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dao, M.N., Phan, H.M. Linear convergence of the generalized Douglas–Rachford algorithm for feasibility problems. J Glob Optim 72, 443–474 (2018). https://doi.org/10.1007/s10898-018-0654-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-018-0654-x

Keywords

Mathematics Subject Classification

Navigation