Skip to main content

Advertisement

Log in

Acute Toxic Effects of the Herbicide Formulation Focus® Ultra on Embryos and Larvae of the Moroccan Painted Frog, Discoglossus scovazzi

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

For regulatory and scientific purposes, there is a need to understand the sensitivity of a wider variety of wild species of amphibians and the sensitivities within their life stages to chemicals of widespread use such as herbicides. We investigated the acute toxic effects of the herbicide formulation Focus Ultra [with the active ingredient (a.i.) cycloxydim plus solvent naphtha and sodium dioctylsulphosuccinate as added substances] on embryos and early stage larvae of the Moroccan painted frog (Discoglossus scovazzi). Different clinical signs (twitching, convulsion, and narcosis) occurred at 40 and 80 mg/L in embryos (4 and 8 mg a.i./L) and narcotic effects (total immobilization or irregular escape responses) at 10, 15, and 20 mg/L in larvae (1, 1.5, and 2 mg a.i./L). Growth inhibition (total length), starting at 20 mg/L in embryos and 2.5 mg/L in larvae (2 and 0.25 mg a.i./L, respectively) was understood as sign of toxicity (retardation) and not as sign of teratogenicity. However, the connection to teratogenesis remained unclear though total length reduction occurred at concentrations <20 % of the 96-h LC50 value and at a minimum concentration that inhibits growth of only 17 % of the 96-h LC50 value. Starting at 20 mg/L, mortality in embryos significantly increased and at 15 mg/L in early larvae (2 and 1.5 mg a.i./L, respectively). Mortality of larvae was enhanced during the first 24 h of exposure to 15 and 20 mg/L (1.5 and 2 mg a.i./L). Morphology of the embryos remained unobtrusive. In contrary, axial malformations significantly increased in the early larvae starting at 10 mg/L (1 mg a.i./L), a concentration free of lethal effects. In all considered end points, larvae were significantly more sensitive than embryos, probably because of developmental and physiological properties or different exposure and bioavailability of the compound. Focus Ultra induced comparable lethal and immobilization effects in D. scovazzi as it does to standard test organisms in pesticide approval. However, to validate the apparent safety in the field, which is based on calculated surface water concentrations of the a.i., more data on real contamination levels is necessary (e.g., peak concentrations, concentrations of added substances). Furthermore, sufficient buffer strips between the farmland and amphibian ponds must be considered, and the effects of the substance on terrestrial life stages have not been assessed yet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • American Society for Testing and Materials (1998) Standard guide for conducting the frog embryo teratogenesis assay-Xenopus (FETAX). E1439-98. ASTM International, West Conshohocken

  • American Society for Testing and Materials (2002) Standard guide for conducting acute toxicity tests on test materials with fishes, macroinvertebrates, and amphibians. E 729-96. ASTM International, West Conshohocken

  • Bantle JA, Dumont JN, Finch RA, Linder G, Fort DJ (1998) Atlas of abnormalities: a guide for the performance of FETAX. Oklahoma State University Press, Stillwater

    Google Scholar 

  • Bantle JA, Finch RA, Fort DJ, Stover EL, Hull M, Kumsher-King M et al (1999) Phase III interlaboratory study of FETAX. Part 3. FETAX validation using 12 compounds with and without an exogenous metabolic activation system. J Appl Toxicol 19:447–472

    Article  CAS  Google Scholar 

  • Beketov MA, Kefford BJ, Schäfer RB, Liess M (2013) Pesticides reduce regional biodiversity of stream invertebrates. Proc Natl Acad Sci USA 110:11039–11043

    Article  CAS  Google Scholar 

  • Bellantuono V, Cassano G, Lippe C (2014) Pesticides alter ion transport across frog (Pelophylax kl. esculentus) skin. Chem Ecol 30:602–610

    Article  CAS  Google Scholar 

  • Berger G, Graef F, Pfeffer H (2013) Glyphosate applications on arable fields considerably coincide with migrating amphibians. Sci Rep 3:2622

    Article  Google Scholar 

  • Bernabò I, Sperone E, Tripepi S, Brunelli E (2011) Toxicity of chlorpyrifos to larval Rana dalmatina: acute and chronic effects on survival, development, growth and gill apparatus. Arch Environ Contam Toxicol 61:704–718

    Article  Google Scholar 

  • Bernal MH, Solomon KR, Carrasquilla G (2009) Toxicity of formulated glyphosate (Glyphos) and Cosmo-Flux to larval and juvenile Colombian frogs. 2. Field and laboratory microcosm acute toxicity. J Toxicol Environ Health A 72:966–973

    Article  CAS  Google Scholar 

  • Böll S, Schmidt BR, Veith M, Wagner N, Rödder D, Weimann C et al (2013) Anuran amphibians as indicators of changes in aquatic and terrestrial ecosystems following GM crop cultivation: a monitoring guideline. Biorisk 8:39–51

    Article  Google Scholar 

  • Boone MD, Cowman D, Davidson C, Hayes T, Hopkins W, Relyea RA, et al. (2007) Evaluating the role of environmental contamination in amphibian population declines. In: Gascon C, Collins JP, Moore RD, Church DR, McKay JE, Mendelson JR III (eds) Amphibian conservation action plan. IUCN/SSC Amphibian Specialist Group, Gland, pp 32–36

  • Boutilier RG, Stiffler DF, Toews DP (1992) Exchange of respiratory gases, ions, and water in amphibious and aquatic amphibians. In: Feder ME, Burggren WW (eds) Environmental physiology of the amphibians. The University of Chicago Press, Chicago, pp 81–124

    Google Scholar 

  • Brown CD, van Beinum W (2009) Pesticide transport by way of subsurface drains in Europe. Environ Pollut 157:3314–3324

    Article  CAS  Google Scholar 

  • Brühl CA, Pieper S, Weber B (2011) Amphibians at risk? Susceptibility of terrestrial amphibian life stages to pesticides. Environ Toxicol Chem 30:2465–2472

    Article  Google Scholar 

  • Brühl CA, Schmidt T, Pieper S, Alscher A (2013) Terrestrial pesticide exposure of amphibians: an underestimated cause of global decrease? Sci Rep 3:1135

    Article  Google Scholar 

  • Burton JD, Gronwald JW, Somers DA, Gengenbach BG, Wyse DL (1989) Inhibition of corn acetyl-CoA carboxylase by cyclohexanedione and aryloxyphenoxypropionate herbicides. Pestic Biochem Physiol 34:76–85

    Article  CAS  Google Scholar 

  • Collins JP, Storfer A (2003) Global amphibian decreases: sorting the hypotheses. Divers Distrib 9:89–98

    Article  Google Scholar 

  • Davidson C (2004) Declining downwind: amphibian population decreases in California and historical pesticide use. Ecol Appl 14:1892–1902

    Article  Google Scholar 

  • Duke SO, Powles SB (2008) Glyphosate: a once-in-a-century herbicide. Pest Manag Sci 64:319–325

    Article  CAS  Google Scholar 

  • Edge CB, Gahl MK, Thompson DG, Houlahan JE (2013) Labortaory and field exposure of two species of juvenile amphibians to a glyphosate-based herbicide and Batrachochytrium dendrobatidis. Sci Total Environ 44:145–152

    Article  Google Scholar 

  • Edge CB, Thompson DG, Hao C, Houlahan JE (2014) The response of amphibian larvae to exposure to a glyphosate-based herbicide (Roundup WeatherMax) and nutrient enrichment in an ecosystem experiment. Ecotoxicol Environ Saf 109:124–132

    Article  CAS  Google Scholar 

  • Edginton AN, Sheridan PM, Stephenson GR, Thompson DG, Boermans HJ (2004) Comparative effects of pH and vision herbicide on two life stages of four anuran amphibian species. Environ Toxicol Chem 23:815–822

    Article  CAS  Google Scholar 

  • Edwards WM, Triplett GB Jr, Kramer RM (1980) A watershed study of glyphosate transport in runoff. J Environ Qual 9:661–665

    Article  CAS  Google Scholar 

  • Erickson RJ, McKim JM (1990) A simple flow-limited model for gas exchange of organic chemicals at fish gills. Environ Toxicol Chem 9:159–165

    Article  CAS  Google Scholar 

  • European Food Safety Authority (2010) Conclusion on the peer review of the pesticide risk assessment of the active substance cycloxydim. EFSA J 8:1669

    Google Scholar 

  • Evans DH (1987) The fish gill: site of action and model for toxic effects of environmental pollutants. Environ Health Perspect 71:47–58

    Article  CAS  Google Scholar 

  • Evans DH, Piermarini PM, Potts WTW (1999) Ionic transport in the fish gill epithelium. J Experiment Zool 283:641–652

    Article  CAS  Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2006) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation and excretion of nitrogeneous waste. Physiol Rev 85:97–177

    Article  Google Scholar 

  • Feder ME, Burggren WW (1985) Cutaneous gas exchange in vertebrates: design, patterns, control, and implications. Biol Rev 60:1–45

    Article  CAS  Google Scholar 

  • Federal Ministry of Food, Agriculture and Consumer Protection (2013) National action plan on sustainable use of plant protection products. Available at: http://www.nap-pflanzenschutz.de/fileadmin/SITE_MASTER/content/Dokumente/Grundlagen/NAP_2013/NAP_2013_En.pdf

  • Fenwick JC (1989) Calcium exchange across fish gills. In: Pang PKT, Schreibman MP (eds) Vertebrate endocrinology: fundamentals and biomedical implications. Academic, San Diego, pp 319–338

    Google Scholar 

  • Fort DJ, Rogers RL (2005) Enhanced frog embryo teratogenesis assay: Xenopus model using Xenopus tropicalis. In: Ostrander GK (ed) Techniques in aquatic toxicology, vol 2. CRC Press, Boca Raton, pp 39–54

    Google Scholar 

  • Fromhage L, Vences M, Veith M (2004) Testing alternative vicariance scenarios in western mediterranean discoglossid frogs. Mol Phylogenet Evol 31:308–322

    Article  CAS  Google Scholar 

  • Fuentes L, Moore LJ, Rodgers JH Jr, Bowerman WW, Yarrow GK, Chao WY (2011) Comparative toxicity of two glyphosate formulations (original formulation of Roundup and Roundup WeatherMAX) to six North American larval anurans. Environ Toxicol Chem 30:2756–2761

    Article  CAS  Google Scholar 

  • Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M, Morales MB et al (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 11:97–105

    Article  CAS  Google Scholar 

  • Gerhardt J (1999) Warkany lecture: signaling pathways in development. Teratology 60:226–239

    Article  Google Scholar 

  • Gilbert SF (2010) Developmental biology, 9th edn. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Gosner KL (1960) A simple table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190

    Google Scholar 

  • Gradwell N (1972a) Comments on gill irrigation in Rana fuscigula. Herpetology 28:123–125

    Google Scholar 

  • Gradwell N (1972b) Gill irrigation in Rana catesbeiana, part I. On the anatomical basis. Can J Zool 50:481–499

    Article  CAS  Google Scholar 

  • Gradwell N (1972c) Gill irrigation in Rana catesbeiana, part II. On the musculoskeletal mechanism. Can J Zool 50:501–521

    Article  CAS  Google Scholar 

  • Gradwell N (1975) The bearing of filter feeding on the water pumping mechanism of Xenopus tadpoles (Anura: Pipidae). Acta Zool 56:119–128

    Article  Google Scholar 

  • Houlahan JE, Findlay CS, Schmidt BR, Meyer AH, Kuzmin SL (2000) Quantitative evidence for global amphibian population decreases. Nature 404:752–755

    Article  CAS  Google Scholar 

  • Howe CM, Gillis R, Mowbray RC (1998) Effect of chemical synergy and larval stage on the toxicity of atrazine and alachlor to amphibian larvae. Environ Toxicol Chem 17:519–525

    Article  CAS  Google Scholar 

  • Howe CM, Berrill M, Pauli BD, Helbing CC, Werry K, Veldhoen N (2004) Toxicity of glyphosate-based pesticides to four North American frog species. Environ Toxicol Chem 23:1928–1938

    Article  CAS  Google Scholar 

  • Landis DA, Gardiner MM, van der Werf W, Swinton SM (2008) Increasing corn for biofuel production reduces biocontrol services in agricultural landscapes. Proc Natl Acad Sci USA 105:20552–20557

    Article  CAS  Google Scholar 

  • Lenhardt PP, Brühl CA, Berger G (2014) Temporal coincidence of amphibian migration and pesticide applications on arable fields in spring. Basic Appl Ecol 16:54–63

    Article  Google Scholar 

  • Malaj E, von der Ohe PC, Grote M, Kühne R, Mondy CP, Usseglio-Polatera P et al (2014) Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proc Natl Acad Sci USA 111:9549–9554

    Article  CAS  Google Scholar 

  • Mann RM, Bidwell JR (1999) The toxicity of glyphosate and several glyphosate formulations to four species of Southwestern Australian frogs. Arch Environ Contam Toxicol 36:193–199

    Article  CAS  Google Scholar 

  • Mann RM, Bidwell JR (2000) Application of the FETAX protocol to assess the developmental toxicity of nonylphenol ethoxylate to Xenopus laevis and two Australian frogs. Aquat Toxicol 51:19–29

    Article  CAS  Google Scholar 

  • Mann RM, Bidwell JR (2001) The acute toxicity of agricultural surfactants to the tadpoles of four Australian and two exotic frogs. Environ Pollut 114:195–205

    Article  CAS  Google Scholar 

  • Mann RM, Bidwell JR, Tyler MJ (2003) Toxicity of herbicide formulations to frogs and the implications for product registration: a case study from Western Australia. Appl Herpetol 1:13–22

    Article  Google Scholar 

  • Mann RM, Hyne RV, Choung CB, Wilson SP (2009) Amphibians and agricultural chemicals: review of the risks in a complex environment. Environ Pollut 157:2903–2927

    Article  CAS  Google Scholar 

  • McComb BC, Curtis L, Chambers CL, Newton M, Bentson K (2008) Acute toxic hazard evaluations of glyphosate herbicide on terrestrial vertebrates of the Oregon coast range. Environ Sci Pollut Res 15:266–272

    Article  CAS  Google Scholar 

  • Organisation for Economic Co-operation and Development (OECD) (2009) Test no. 231: Amphibian metamorphosis assay. In: OECD Guidelines for Testing of Chemicals. Section 2: Effects on biotic systems. OECD Publishing, Paris

  • Payton ME, Greenstone MH, Schenker N (2003) Overlapping confidence intervals or SE intervals: what do they mean in terms of statistical significance? J Insect Sci 3:34

    Article  Google Scholar 

  • Puglis HJ, Boone MD (2011) Effects of technical-grade active ingredient vs. commercial formulation of seven pesticides in the presence or absence of UV radiation on survival of green frog tadpoles. Arch Environ Contam Toxicol 60:145–155

    Article  CAS  Google Scholar 

  • Quaranta A, Bellantuono V, Cassano G, Lippe C (2009) Why amphibians are more sensitive than mammals to xenobiotics. PLoS One 4:e7699

    Article  Google Scholar 

  • Relyea RA (2005) The lethal impact of Roundup on aquatic and terrestrial amphibians. Ecol Appl 15:1118–1124

    Article  Google Scholar 

  • Relyea RA (2011) Amphibians are not ready for Roundup. In: Elliott JE, Bishop CA, Morrissey CA (eds) Wildlife ecotoxicology, vol 3., Emerging topics in ecotoxicologySpringer, New York, pp 267–300

    Chapter  Google Scholar 

  • Relyea RA, Jones DK (2009) Toxicity of Roundup Original Max to 13 species of larval amphibians. Environ Toxicol Chem 28:2004–2008

    Article  CAS  Google Scholar 

  • Roelants K, Haas A, Bossuyt F (2011) Anuran radiations and the evolution of tadpole morphospace. Proc Natl Acad Sci USA 108:8731–8736

    Article  CAS  Google Scholar 

  • Salvador A, Donaire-Barroso D, Slimani T, El Mouden EH, Geniez P, Perez-Mellado V, et al. (2009) Discoglossus scovazzi. The IUCN red list of threatened species. Version 2014.3. Available at: http://www.iucnredlist.org/details/55272/0

  • Schmidt BR (2004) Pesticides, mortality and population growth rate. Trends Ecol Evol 19:459–460

    Article  Google Scholar 

  • Stuart SN, Hoffmann M, Chanson JS, Cox NA, Berridge RJ, Ramani P et al (2008) Threatened amphibians of the world. Lynx Edicions, Barcelona

    Google Scholar 

  • Thompson DG, Wojtaszek BF, Staznik B, Chartrand DT, Stephenson GR (2004) Chemical and biomonitoring to assess potential acute effects of Vision herbicide on native amphibian larvae in forest wetlands. Environ Toxicol Chem 23:843–849

    Article  CAS  Google Scholar 

  • Ultsch GR, Bradford DF, Freda J (1999) Physiology, coping with the environment. In: Altig R, McDiarmid RW (eds) Tadpoles, the biology of anuran larvae. The University of Chicago Press, Chicago, pp 189–214

    Google Scholar 

  • Vancetovic J, Vidakovic M, Babic M, Radojcic DB, Bozinovic S, Stevanovic M (2009) The effect of cycloxydim tolerant maize (CTM) alleles on grain yield and agronomic traits of maize single cross hybrid. Maydica 54:91–95

    Google Scholar 

  • Viertel B (1990) Suspension feeding of anuran larvae at low concentrations of Chlorella algae (Amphibia, Anura). Oecologia 85:167–177

    Article  Google Scholar 

  • Viertel B (1992) Functional response of suspension feeding anuran larvae to different particle sizes at low concentrations. Hydrobiology 234:151–173

    Article  Google Scholar 

  • Wagner N, Reichenbecher W, Teichmann H, Tappeser B, Lötters S (2013) Questions concerning the potential impact of glyphosate-based herbicides on amphibians. Environ Toxicol Chem 32:1688–1700

    Article  CAS  Google Scholar 

  • Wagner N, Rödder D, Brühl CA, Veith M, Lenhardt PP, Lötters S (2014a) Evaluating the risk of pesticide exposure for amphibian species listed in Annex II of the European Union Habitats Directive. Biol Conserv 176:64–70

    Article  Google Scholar 

  • Wagner N, Züghart W, Mingo V, Lötters S (2014b) Are deformation rates of anuran developmental stages suitable indicators for environmental pollution? Possibilities and limitations. Ecol Indic 45:394–401

    Article  CAS  Google Scholar 

  • Wagner N, Lötters S, Veith M, Viertel B (2015) Acute toxic effects of the herbicide formulation and the active ingredient used in cycloxydim-tolerant maize cultivation on embryos and larvae of the African clawed frog, Xenopus laevis. Bull Environ Contam Toxicol 94:412–418

    Article  CAS  Google Scholar 

  • Wassersug R, Hoff K (1979) A comparative study of the buccal pumping mechanism of tadpoles. Biol J Linn Soc 12:225–259

    Article  Google Scholar 

  • Wassersug R, Hoff K (1982) Developmental changes in the orientation of the anuran jaw suspension. Evol Biol 15:223–246

    Article  Google Scholar 

  • Williams BK, Semlitsch RD (2010) Larval responses of three Midwestern anurans to chronic, low-dose exposures of four herbicides. Arch Environ Contam Toxicol 58:819–827

    Article  CAS  Google Scholar 

  • Weir SM, Yu S, Salice CJ (2012) Acute toxicity of herbicide formulations and chronic toxicity of technical-grade trifluralin to larval green frogs (Lithobates clamitans). Environ Toxicol Chem 31:2029–2034  

    Article  CAS  Google Scholar 

  • Wilson JG, Warkany J (1965) Teratology: principles and techniques. The University of Chicago Press, Chicago

    Google Scholar 

  • Yu S, Wakes MR, Cai Q, Maul JD, Cobb BP (2013) Lethal and sublethal effects of three insecticides on two developmental stages of Xenopus laevis and comparison with other amphibians. Environ Toxicol Chem 32:2056–2064

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Permissions were obtained with courtesy by the Landesuntersuchungsamt (Koblenz, Germany), the Veterinary Office, and the Nature Conservation Authority Trier-Saarburg (Trier, Germany). N. W. is grateful for financial support from the ‘Graduiertenkolleg, 1319—Verbesserung von Normsetzung und “Normanwendung im integrierten Umweltschutz durch rechts und naturwissenschaftliche Kooperation” at Trier University, which was funded by the German Research Foundation. Reinhard Bierl (Department of Hydrology, Trier University) performed the water analysis. We thank Frank Pasmans from Gent University for providing eggs from captivity-bred D. scovazzi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman Wagner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, N., Lötters, S., Veith, M. et al. Acute Toxic Effects of the Herbicide Formulation Focus® Ultra on Embryos and Larvae of the Moroccan Painted Frog, Discoglossus scovazzi . Arch Environ Contam Toxicol 69, 535–544 (2015). https://doi.org/10.1007/s00244-015-0176-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-015-0176-1

Keywords

Navigation