Skip to main content
Log in

The Impact of Uranium Mine Contamination of Soils on Plant Litter Decomposition

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

As part of a tier 3 risk assessment performed for a uranium mining area, the ability of soils with different degrees of metal contamination to degrade organic matter was assessed using litter bags filled with leaves of Quercus robur, Pinus pinaster, Salix atrocinerea, or a mixture of the three species. Litter bags were exposed at different sites within the mine area and at a reference area for 3, 6, 9, and 12 months. Biomass loss, nitrogen (N), phosphorus (P), carbon (C) and total fatty acid, total phenolic, and ergosterol contents were assessed for each litter bag retrieved from the field. The decomposition of litter at each site seemed to be governed by a complex interaction of many different factors. After 12 months of exposure, leaves from the most contaminated sites were distinguishable from those from the reference site. In the reference site, the greatest percentages of biomass loss were attained by Q. robur and P. pinaster leaves. These species displayed the second highest and the lowest C-to-N ratios, respectively. In addition, the high P content of the litter from these two species may have favored microbial colonization. The results suggest that the decomposition of P. pinaster and Q. robur leaves may have been favored at the reference site by the high abundance of both species at this site and the subsequent adaptation of the microbial community to their litter. Our study shows that different species of leaf litter should be used to discriminate between contaminated sites with different levels of contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystem: a triangle relationship. Oikos 79:439–449

    Article  Google Scholar 

  • André A, Antunes SC, Gonçalves F, Pereira R (2009) Bait-lamina assay as a tool to assess the effects of metal contamination in the feeding activity of soil invertebrates within a uranium mine area. Environ Pollut 157:2368–2377

    Article  Google Scholar 

  • Antunes SC, Castro BB, Pereira R, Gonçalves F (2008) Contribution for Tier 1 of the Ecological Risk Assessment of Cunha Baixa Uranium Mine (Central Portugal): II. Soil ecotoxicological screening. Sci Total Environ 390:387–395

    Article  CAS  Google Scholar 

  • Antunes SC, Pereira R, Marques SM, Castro BB, Gonçalves F (2011) Impaired microbial activity caused by metal pollution: a field study on a deactivated uranium mining area. Sci Total Environ 410–411:87–95

    Article  Google Scholar 

  • Antunes SC, Castro BB, Moreira C, Gonçalves F, Pereira R (2013) Community-level effects in edaphic fauna from an abandoned mining area: integration with chemical and toxicological lines of evidence. Ecotoxicol Environ Saf 88:65–71

    Article  CAS  Google Scholar 

  • Asplund J, Bokhorst S, Wardle DA (2013) Secondary compounds can reduce the soil micro-arthropod effect on lichen decomposition. Soil Biol Biochem 66:10–16

    Article  CAS  Google Scholar 

  • Barajas-Aceves M, Hassan M, Tinoco R, Vazquez-Duhalt R (2002) Effect of pollutants on the ergosterol content as indicator of fungal biomass. J Microbiol Methods 50:227–236

    Article  CAS  Google Scholar 

  • Barrios E (2007) Soil biota, ecosystem services and land productivity. Ecol Econ 64:269–285

    Article  Google Scholar 

  • Bárta J, Applová M, Vanĕk D, Krištůfková M, Šantrůčkova H (2010) Effect of available P and phenolics on mineral N release in acidified spruce forest: connection with lignin-degrading enzymes and bacterial and fungal communities. Biogeochemistry 97:71–87

    Article  Google Scholar 

  • Beare MH, Parmelee RW, Hendrix PF, Cheng W, Coleman DC, Crossley DA (1992) Microbial and faunal interactions and effects on litter nitrogen and on decomposition in agro ecosystem. Ecol Monogr 62:569–591

    Article  Google Scholar 

  • Boeriu CG, Bravo D, Gosselink RJA, van Dam JEG (2004) Characterisation of structure dependent functional properties of lignin with infrared spectroscopy. Ind Crops Prod 20:205–218

    Article  CAS  Google Scholar 

  • Bonanomi G, Incerti G, Giannino F, Mingo A, Lanzotti V, Mazzoleni S (2013) Litter quality assessed by solid state 13C NMR spectroscopy predicts decay rate better than C/N and lignin/N ratios. Soil Biol Biochem 56:40–48

    Article  CAS  Google Scholar 

  • Conn C, Dighton J (2000) Litter quality influences on decomposition, ectomycorrhizal community structure and mycorrhizal root surface acid phosphatase activity. Soil Biol Biochem 32:489–496

    Article  CAS  Google Scholar 

  • Cotrufo MF, De Santo AV, Alfani A, Bartoli G, De Cristofano A (1995) Effects of urban heavy metal pollution on organic matter decomposition in Quercus ilex L. woods. Environ Pollut 89:81–88

    Article  CAS  Google Scholar 

  • Coûteaux M-M, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Tree 10:63–66

    Google Scholar 

  • Davidson DA, Grieve IC (2006) Relationships between biodiversity and soil structure and function: evidence from laboratory and field experiments. Appl Soil Ecol 33:176–178

    Article  Google Scholar 

  • De Silva PMCS, Pathirane A, van Straalen NM, van Gestel CAM (2010) Chlorpyrifos causes decreased organic matter decomposition by suppressing earthworms and termite communities in tropical soil. Environ Pollut 158:3041–3047

    Article  Google Scholar 

  • Dighton J, Mascarenhas M, Arbuckle-Keil GA (2001) Changing resources: assessment of leaf litter carbohydrate resource changes at a microbial scale of resolution. Soil Biol Biochem 33:1429–1432

    Article  CAS  Google Scholar 

  • Drzewiecka K, Mleczek M, Gąsecka M, Magdziak Z, Goliński P (2012) Changes in Salix viminalis L. cv. ‘Cannabina’ morphology and physiology in response to nickel ions—hydroponic investigations. J Hazard Mater 217–218:429–438

    Article  Google Scholar 

  • Dumat C, Quenea K, Bermond A, Toinen S, Benedetti MF (2006) Study of the trace metal ion influence on the turnover of soil organic matter in cultivated contaminated soils. Environ Pollut 142:521–529

    Article  CAS  Google Scholar 

  • Faber JH, van Vensen J (2012) Elaborations on the use of the ecosystems services concepts for application in ecological risk assessment for soils. Sci Total Environ 415:3–8

    Article  CAS  Google Scholar 

  • Gartner TB, Cardon ZG (2006) Site of leaf origin affects how mixed litter decomposes. Soil Biol Biochem 38:2307–2317

    Article  CAS  Google Scholar 

  • Gąsecka M, Mleczek M, Drzewiceka K, Magdziak Z, Rissmann I, Chadzinikolau T et al (2012) Physiological and morphological changes in Salix viminalis L. as a result of plant exposure to copper. J Environ Sci Health A 47:548–557

    Article  Google Scholar 

  • Gholz HI, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob Change Biol 6:751–765

    Article  Google Scholar 

  • Guedes MJ, Pereira R, Duarte K, Rocha-Santos TAP, Antunes SC, Gonçalves F et al (2011) Sterols and fatty acid biomarkers as indicators of changes in soil microbial communities in a uranium mine area. J Environ Health A 46:1–10

    Article  Google Scholar 

  • Harrison AF (1971) The inhibitory effect of oak leaf litter tannins on the growth of fungi, in relation to litter decomposition. Soil Biol Biochem 3:167–172

    Article  CAS  Google Scholar 

  • Incerti G, Bonanomi G, Giannino F, Rutigliano FA, Piermatteo D, Castaldi S et al (2011) Litter decomposition in Mediterranean ecosystems: modelling the controlling role of climatic conditions and litter quality. Appl Soil Ecol 49:148–157

    Article  Google Scholar 

  • Irmler U (2000) Changes in the fauna and its contribution to mass loss and N release during leaf litter decomposition in two deciduous forests. Pedobiologia 44:105–118

    Article  Google Scholar 

  • Joergensen RG, Wichern F (2008) Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biol Biochem 40:2977–2991

    Article  CAS  Google Scholar 

  • Kantouch A, El-Sayed AA, Salama M, El-Kheir AA, Mowafi S (2013) Salicylic acid and some of its derivatives as antibacterial agents for viscose fabric. Int J Biol Macromol 62:603–607

    Article  CAS  Google Scholar 

  • Kemp PR, Reynolds JF, Virginia RA, Whitford WJ (2003) Decomposition of leaf and root litter of Chihuahuan desert shrubs: effect of three years of summer drought. J Arid Environ 53:21–39

    Article  Google Scholar 

  • Lavelle P, Blanchart E, Martin A, Spain A, Toutain F, Barois I et al (1993) A hierarchical model for decomposition in terrestrial ecosystems: application to soil of the humid tropics. Biotropica 25:130–150

    Article  Google Scholar 

  • Li Q, Moorhead DL, De Forest J, Henderson R, Chen J, Jensen R (2009) Mixed litter decomposition in a managed Missouri Ozark forest ecosystem. For Ecol Manag 257:688–694

    Article  Google Scholar 

  • Liao M, Xie XM (2007) Effect of heavy metals on substrate utilization pattern, biomass, and activity of microbial communities in a reclaimed mining wasteland of red soil area. Ecotoxicol Environ Saf 66:217–223

    Article  CAS  Google Scholar 

  • Llugany M, Martin SR, Barceló J, Poschenrieder C (2013) Endogenous jasmonic and salicylic acids levels in the Cd-hyperaccumulator Noccaea (Thlaspi) praecox exposed to fungal infection and/or mechanical stress. Plant Cell Rep 32:1243–1249

    Article  CAS  Google Scholar 

  • Lorenz K, Preston CM, Krumrei S, Feger K (2004) Decomposition of needle/leaf litter from Scots pine, black cherry, common oak and European beech at conurbation forest site. Eur J For Res 123:177–188

    Article  Google Scholar 

  • Lourenço J, Pereira R, Silva A, Morgado J, Carvalho F, Oliveira J et al (2011a) Genotoxic endpoints in the earthworms sub-lethal assay to evaluate natural soils contaminated by metals and radionuclides. J Hazard Mater 186:788–795

    Article  Google Scholar 

  • Lourenço J, Silva A, Carvalho F, Oliveira J, Malta M, Mendo S et al (2011b) Histopathological changes in the earthworm Eisenia andrei associated with the exposure to metals and radionuclides. Chemosphere 85:1630–1634

    Article  Google Scholar 

  • Lourenço J, Pereira R, Silva A, Carvalho F, Oliveira J, Malta M et al (2012) Evaluation of the sensitivity of genotoxicity and cytotoxicity endpoints in earthworms exposed in situ to uranium mining wastes. Ecotoxicol Environ Saf 75:46–54

    Article  Google Scholar 

  • Madritch MD, Hunter MD (2004) Phenotypic diversity and litter chemistry affect nutrient dynamics during litter decomposition in a two species mix. Oikos 105:125–131

    Article  CAS  Google Scholar 

  • Merckx R, Brans K, Smolders E (2001) Decomposition of dissolved organic carbon after soil drying and rewetting as an indicator of metal toxicity in soils. Soil Biol Biochem 33:235–240

    Article  CAS  Google Scholar 

  • Mesman M, Jensen J, Rutgers M, Bierkens J (2006a) Decision support system for ecological risk assessment. In: Jensen J, Mesman M (eds) Ecological risk assessment of contaminated land. Decision support for site specific. Report number 711701047. RIVM. http://www.rivm.nl/bibliotheek/rapporten/711701047.pdf. Accessed Dec 2012

  • Mesman M, Rutgers M, Jensen J (2006b) Using the Triad in site specific assessment of contaminated soil. In: Jensen J, Mesman M (ed) Ecological risk assessment of contaminated land. Decision support for site specific. Report number 711701047. RIVM. http://www.rivm.nl/bibliotheek/rapporten/711701047.pdf. Accessed Dec 2012

  • Mfilinge PF, Meziane T, Bachok Z, Tsuchiya M (2003) Fatty acids in decomposing mangrove leaves: microbial activity, decay and nutritional quality. Mar Ecol Prog Ser 265:97–105

    Article  CAS  Google Scholar 

  • Michell AJ (1990) Second-derivative FT-IR spectra of native celluloses. Carbohydr Res 197:53–60

    Article  CAS  Google Scholar 

  • Moretto JS, Distel RA, Didoné NG (2001) Decomposition and nutrient dynamic of leaf litter and roots from palatable and unpalatable grasses in a semi-arid grassland. Appl Soil Ecol 18:31–37

    Article  Google Scholar 

  • Mulinacci N, Romani A, Galardi C, Pinelli P, Giaccerini C, Vincieri F (2001) Polyphenolic content in olive oil waste waters and related olive samples. J Agric Food Chem 49:3509–3514

    Article  CAS  Google Scholar 

  • Mummey DL, Stahl PD, Buyer JS (2002) Soil microbiology properties 20 years after surface mine reclamation: spatial analysis of reclaimed and undisturbed sites. Soil Biol Biochem 34:1717–1725

    Article  CAS  Google Scholar 

  • Niemeyer JC, Nogueira MA, Carvalho GM, Cohin-De-Pinho SJ, Outeiro US, Rodrigues GG et al (2012) Functional and structural parameters to assess the ecological status of a metal contaminated area in the tropics. Ecotoxicol Environ Saf 86:188–197

    Article  CAS  Google Scholar 

  • Oades JM (1988) The retention of organic matter in soils. Biogeochemistry 5:35–70

    Article  CAS  Google Scholar 

  • Pereira R, Sousa JP, Ribeiro R, Gonçalves F (2006) Microbial indicators in mine soils (S. Domingos Mine, Portugal). Soil Sediment Contam 15:147–167

    Article  CAS  Google Scholar 

  • Pereira R, Antunes SC, Marques SM, Gonçalves F (2008) Contribution for Tier 1 of the Ecological Risk Assessment of Cunha Baixa Uranium Mine (Central Portugal): I. Soil chemical characterization. Sci Total Environ 390:377–386

    Article  CAS  Google Scholar 

  • Pereira R, Marques CR, Silva Ferreira MJ, Neves MFJV, Caetano AL, Antunes SC et al (2009) Phytotoxicity and genotoxicity of soils from an abandoned uranium mine area. Appl Soil Ecol 42:209–220

    Article  Google Scholar 

  • Pereira R, Barbosa S, Carvalho FP (2014) Uranium mining in Portugal: a review of the environmental legacies of the largest mines and environmental and human health impacts. Environ Geochem Health 36:285–301

    Article  CAS  Google Scholar 

  • Pérez HN, Díaz S, Vendramini F, Gurvich DE, Cingolani AM, Giorgis M et al (2007) Direct and indirect effects of climate on decomposition in native ecosystems from central Argentina. Austral Ecol 32:749–757

    Article  Google Scholar 

  • Pleguezuelo CRR, Zuazo VHD, Fernández LJM, Peinado FJM, Tarifa DF (2009) Litter decomposition and nitrogen release in a sloping Mediterranean subtropical agroecosystem on the coast of Granada (SE, Spain): effects of floristic and topographic alteration on the slope. Agric Ecosyst Environ 134:79–88

    Article  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529–540

    Article  CAS  Google Scholar 

  • Quinn GP, Keoug MJ (2002) Experimental design and data analysis for biologists. University Press, Cambridge, UK, Cambridge

    Book  Google Scholar 

  • Rahman MM, Tsukamoto J, Rahman M, Yoreyama A, Mostafa KM (2013) Lignin and its effects on litter decomposition in forest ecosystems. Chem Ecol 29:540–553

    Article  CAS  Google Scholar 

  • Römbke J, Heimbach F, Hoy S, Kula C, Scott-Fordsmand J, Sousa P et al (eds) (2003) Effects of plant protection products on functional endpoints in soil (EPFES, Lisbon 2002). SETAC, Pensacola

    Google Scholar 

  • Ross DJ, Tate KR, Newton PCD, Clark H (2002) Decomposability of C3 and C4 grass litter sampled under different concentrations of atmospheric carbon dioxide at natural CO2 spring. Plant Soil 240:275–286

    Article  CAS  Google Scholar 

  • Scheid S, Günthard-Goerg MS, Schulin R, Nowack B (2009) Accumulation and solubility of metals during leaf litter decomposition in non-polluted and polluted soil. Eur J Soil Sci 60:613–621

    Article  CAS  Google Scholar 

  • Schneider T, Keiblinger KM, Schmid E, Sterflinger-Gleixner K, Ellersdorfer G, Roschitzki B et al (2012) Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J 6(9):1749–1762

    Article  CAS  Google Scholar 

  • Seneviratne G (2000) Litter quality and nitrogen release in tropical agriculture: a synthesis. Biol Fertil Soil 31:60–64

    Article  CAS  Google Scholar 

  • Silva L, Cachada A, Freitas AC, Pereira R, Rocha-Santos TA, Duarte AC (2010) Assessment of fatty acid as differentiator of usages of urban soil. Chemosphere 81:968–975

    Article  CAS  Google Scholar 

  • Šnajdr J, Cajthaml T, Valáašková V, Merhautová V, Petránková M, Spetz P et al (2011) Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition. FEMS Microbiol Ecol 75:291–303

    Article  Google Scholar 

  • Socrates G (1994) Infrared characteristic group frequencies, 2nd edn. Wiley, West Sussex

    Google Scholar 

  • Stewart D (1995) Fourier-transform infrared microspectroscopy of plant tissues. Appl Spectrosc 50:357–365

    Article  Google Scholar 

  • Van Bergen PF, Nott CJ, Bull ID, Poulton PR, Evershed RP (1998) Organic geochemical studies of soils from Rothamsted Classical Experiments. IV. Preliminary results of a study of the effect of soil pH on organic matter decay. Org Geochem 29(5–7):1779–1795

    Article  Google Scholar 

  • Vanderbilt KL, White CS, Hopkins O, Craig JA (2008) Aboveground decomposition in arid environments: results of a long-term study in central New Mexico. J Arid Environ 72:696–709

    Article  Google Scholar 

  • Vivanco L, Austin AT (2006) Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from North and South America. Oecologia 150:97–107

    Article  Google Scholar 

  • Vivenstova RE, Kumpiene J, Gunnerisusson L, Holmegren A (2005) Changes in organic matter composition and quantity with distance to a nickel smelter—a case study of the Kola Peninsula NW Russia. Geoderma 127:216–226

    Article  Google Scholar 

  • Wallenstein MD, Haddix ML, Ayres E, Steltaer H, Magrini-Bair VA, Paul EA (2013) Litter chemistry changes more rapidly when decomposed at home but converges during decomposition-transformation. Soil Biol Biochem 57:311–319

    Article  CAS  Google Scholar 

  • Xuluc-Tolosa FJ, Vester HFM, Ramirez-Marcial N, Castellanos-Albores J, Lawrence D (2003) Leaf litter decomposition of tree species in the three successional phases of tropical dry secondary forest in Campeche, Mexico. For Ecol Manag 174:401–412

    Article  Google Scholar 

  • Zimmer M (2003) Is decomposition of woodland leaf litter influenced by its species richness? Soil Biol Biochem 34:277–284

    Article  Google Scholar 

Download references

Acknowledgments

This research was performed through the Project “Uranium Risk” (POCI/AMB/60899/2004) funded by Fundação para a Ciência e Tecnologia (FCT). This work was also supported by FCT through individual research Grants references SFRH/BPD/40052/2007, SFRH/BPD/73781/2010, SFRH/BD/77647/2011, and SFRH/BPD/65410/2009 under QREN-POPH funds cofinanced by the European Social Fund and Portuguese National Funds from MCTES. The authors thank Maria C. Arau Ribeiro for English revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana C. Freitas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freitas, A.C., Rodrigues, D., Rocha-Santos, T.A.P. et al. The Impact of Uranium Mine Contamination of Soils on Plant Litter Decomposition . Arch Environ Contam Toxicol 67, 601–616 (2014). https://doi.org/10.1007/s00244-014-0035-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-014-0035-5

Keywords

Navigation