Skip to main content
Log in

Patterns of Urban Mercury Contamination Detected by Bioindication With Terrestrial Isopods

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Mercury (Hg) is a trace element with high toxicological impact on potential receptors, including human beings. Global Hg emissions are predicted to increase significantly during the next 40 years. After emission, the metal is transported by air currents and precipitations, leading to increasing depositions even in areas far from emission sources. In the terrestrial environment, Hg is subjected to redistribution and transformation into different inorganic and metal–organic species that are taken up by vegetation and soil organisms. In the present study, the woodlouse (Porcellio scaber) was used as a biological indicator of total Hg pollution in the city of Dornbirn (province of Vorarlberg), Austria. Woodlice were collected from 30 sampling points scattered over the city area, 25 of them situated within a rectangular transect crossing the city area from west-northwest to east-southeast, starting near the Rheintal motorway and ending at the slopes of the Bregenzer Wald hills. In addition to woodlice, soil substrate samples were collected at nine of the selected sampling points. Total Hg concentrations were measured in isopod tissues and soil substrate samples by means of an Hg analyzer. Total Hg concentrations in isopod tissues were significantly correlated with Hg soil contents (P < 0.05). Moreover, a gradient of increasing Hg concentrations was observed in isopod samples along the transect across Dornbirn, with the lowest concentrations detected in woodlouse samples near the Rheintal motorway and the highest levels toward the ascending slopes of the Bregenzer Wald hills. This gradient of increasing Hg concentrations across the city matches a concomitant increase in wet precipitations along the same direction, indicating that deposition by wet precipitation may be an important source for Hg contamination in the city of Dornbirn. Overall, the degree of Hg contamination across the study area can be regarded as rather low, i.e., comparable with concentrations observed in other, unpolluted terrestrial habitats. It is concluded that bioindication by total Hg analysis in woodlice can be applied to distinguish between different levels and sources of contamination in urban areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barkay T, Wagner-Döbler I (2005) Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment. Adv Appl Microbiol 57:1–52

    Article  CAS  Google Scholar 

  • Beeby A (2001) What do sentinels stand for? Environ Pollut 112(2):285–298

    Article  CAS  Google Scholar 

  • Berger B, Dallinger R (1993) Terrestrial snails as quantitative indicators of environmental metal pollution. Environ Monit Assess 25:65–84

    Article  CAS  Google Scholar 

  • Blanuš M, Mrković-Milić R, Durbešić P (2002) Lead and cadmium in soil and isopoda woodlice in Croatia. Ecotoxicol Environ Saf 52(3):198–202

    Article  Google Scholar 

  • Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351

    Article  CAS  Google Scholar 

  • Brereton JLG (1957) The distribution of woodland isopods. Oikos 8(11):85–106

    Article  Google Scholar 

  • Cortet J, Gomot-De Vaufleury A, Poinsot-Balaguer N, Gomot L, Texier C, Cluzeau D (1999) The use of invertebrate soil fauna in monitoring pollutant effects. Eur J Soil Biol 35(3):115–134

    Article  CAS  Google Scholar 

  • Cristol DA, Brasso RL, Condon AM, Fovargue RE, Freidman SL, Hallinger KK et al (2008) The movement of aquatic mercury through terrestrial food webs. Science 320:335

    Article  CAS  Google Scholar 

  • Dallinger R (1993) Strategies of metal detoxification in terrestrial invertebrates. In: Dallinger R, Rainbow PS (eds) Ecotoxicology of metals in invertebrates. Lewis, Boca Raton, pp 245–289

    Google Scholar 

  • Dallinger R (1994) Invertebrate organisms as biological indicators of heavy metal pollution. Appl Biochem Biotechnol 48:27–31

    Article  CAS  Google Scholar 

  • Dallinger R, Berger B (1992) Bio-monitoring in the urban environment. In: Bonotto S, Nobili R, Revoltella RP (eds) Biological indicators for environmental monitoring. Serono Sympsia Review No. 27, Rome, pp 227–242

  • Dallinger R, Berger B, Birkel S (1992) Terrestrial isopods: useful biological indicators of urban metal pollution. Oecologia 89:32–41

    Article  Google Scholar 

  • De Vries W, Römkens PF, Schütze G (2007) Critical soil concentrations of cadmium, lead, and mercury in view of health effects on humans and animals. Rev Environ Contam Toxicol 191:91–130

    Article  Google Scholar 

  • Engelhard C, De Toffol S, Lek I, Rauch W, Dallinger R (2007) Environmental impacts of urban snow management: the alpine case study of Innsbruck. Sci Total Environ 382:286–294

    Article  CAS  Google Scholar 

  • Gál J, Markiewicz-Patkowska J, Hursthouse A, Tatner P (2008) Metal uptake by woodlice in urban soils. Ecotoxicol Environ Saf 69(1):139–149

    Article  Google Scholar 

  • Gerdol R, Bragazza L, Marchesini R, Alber R, Bonetti L, Lorenzoni G et al (2000) Monitoring of heavy metal deposition in Northern Italy by moss analysis. Environ Pollut 108(2):201–208

    Article  CAS  Google Scholar 

  • Giurginca A, Murariu A, Giurginca M (2008) Potentially toxic metals in the Oniscoidea and Diplopoda from Bucharest. In: Makarov SE, Dimitrijevic RN (eds) Advances in arachnology and developmental biology. Vienna – Belgrade – Sophia Monographs, vol 12, pp 201–207

  • Gnamuš A, Burne A, Horvat M (2000) Mercury in the soil-plant-deer-predator food chain of a temperate forest in Slovenia. Environ Sci Technol 34:3337–3345

    Article  Google Scholar 

  • Gundacker C, Pietschnig B, Wittmann KJ, Lischka A, Salzer H, Hohenauer L et al (2002) Lead and mercury in breast milk. Pediatrics 110(5):873–878

    Article  Google Scholar 

  • Heikens A, Peijnenburg WJ, Hendriks AJ (2001) Bioaccumulation of heavy metals in terrestrial invertebrates. Environ Pollut 113(3):385–393

    Article  CAS  Google Scholar 

  • Hendrickx F, Maelfait J-P, De Mayer A, Tack FMG, Verloo MG (2003) Storage mediums affect metal concentrations in woodlice (Isopoda). Environ Pollut 121(1):87–93

    Article  CAS  Google Scholar 

  • Hilson G, Hilson CJ, Pardie S (2007) Improving awareness of mercury pollution in small-scale gold mining communities: challenges and ways forward in rural Ghana. Environ Res 103:275–287

    Article  CAS  Google Scholar 

  • Hopkin SP (1989) Ecophysiology of metals in terrestrial invertebrates. Elsevier, London

    Google Scholar 

  • Hopkin SP (1990) Species-specific differences in the net assimilation of zinc, cadmium, lead, copper and iron by the terrestrial isopods Oniscus asellus and Porcellio scaber. J Appl Ecol 27:460–474

    Article  Google Scholar 

  • Hopkin SP, Hardisty GN, Martin MH (1986) The woodlouse Porcellio scaber as a “biological indicator” of zinc, cadmium, lead and copper pollution. Environ Pollut Ser B 11(4):271–290

    Article  CAS  Google Scholar 

  • Hopkin SP, Jones DT, Dietrich D (1993) The isopod Porcellio scaber as a monitor of the bioavailability of metals in terrestrial ecosystems: towards a global “woodlouse watch” scheme. Sci Total Environ 134(1):357–365

    Article  Google Scholar 

  • Hylander LD, Goodsite ME (2006) Environmental costs of mercury pollution. Sci Total Environ 368:352–370

    Article  CAS  Google Scholar 

  • Jereb V, Horvat M, Drobne D, Pihlar B (2003) Transformations of mercury in the terrestrial isopod Porcellio scaber (Crustacea). Sci Total Environ 304:269–284

    Article  CAS  Google Scholar 

  • Koch E, Werner R (2001) Wind. In: Amt der Vorarlberger Landesregierung (ed) Klima von Vorarlberg. Amt der Vorarlberger Landesregierung, Bregenz, pp 318

  • Landis MS, Lewis CW, Stevens RK, Keeler GJ (2007) Mt. McHenry tunnel study: source profiles and mercury emissions from diesel and gasoline powered vehicles. Atmos Environ 41:8711–8724

    Article  CAS  Google Scholar 

  • Lapanje A, Drobne D, Nolde N, Valant J, Muscet B, Leser V et al (2008) Long-term Hg pollution induced Hg tolerance in the terrestrial isopod Porcellio scaber (Isopoda, Crustacea). Environ Pollut 153:537–547

    Article  CAS  Google Scholar 

  • Lapanje A, Zrimec A, Drobne D, Rupnik M (2010) Long-term Hg pollution-induced structural shifts of bacterial community in the terrestrial isopod (Porcellio scaber) gut. Environ Pollut 158:3186–3193

    Article  CAS  Google Scholar 

  • Lindqvist L, Block M, Tjalve H (1995) Distribution and excretion of Cd, Hg, methyl-Hg and Zn in the predatory beetle Pterostichus niger. Environ Toxicol Chem 14:1195–1201

    CAS  Google Scholar 

  • Liu Y-R, Zheng Y-M, Zhang L-M, Luan Y-X, He J-Z (2010) Effects of mercury on reproduction, avoidance, and heat shock protein gene expression of the soil springtail Folsomia candida. Environ Toxicol Chem 29(3):654–659

    Article  CAS  Google Scholar 

  • Lock K, Janssen C (2001) Ecotoxicity of mercury to Eisenia fetida, Enchytraeus albidus and Folsomia candida. Biol Fertil Soils 34(4):219–221

    Article  CAS  Google Scholar 

  • Markus JA, McBratney AB (1996) An urban soil study: heavy metals in Glebe, Australia. Austr J Soil Res 34(3):453–465

    Article  CAS  Google Scholar 

  • Meili M, Bishop K, Bringmark L, Johansson K, Munthe J, Sverdrup H et al (2003) Critical levels of atmospheric pollution: criteria and concepts for operational modeling of mercury in forest and lake ecosystems. Sci Total Environ 304:83–106

    Article  CAS  Google Scholar 

  • Miller EK, Vanarsdale A, Keeler GJ, Chalmers A, Poissant L, Kamman NC et al (2005) Estimation and mapping of wet and dry mercury deposition across Northeastern North America. Ecotoxicology 14(1–2):53–57

    Article  CAS  Google Scholar 

  • Mukherjee AB, Zevenhoven R, Brodersen J, Hylander LD, Bhattacharya P (2004) Mercury in waste in the European Union: sources, disposal methods and risks. Res Conserv Recycl 42:155–182

    Article  Google Scholar 

  • Nolde N, Drobne D, Horvat M, Jereb V (2005) Reduction and methylation of mercury in the terrestrial isopod Porcellio scaber (Crustacea) and its environment. Environ Toxicol Chem 24(7):1697–1704

    Article  CAS  Google Scholar 

  • Nolde N, Drobne D, Valant J, Padovan I, Horvat M (2006) Lysosomal membrane stability in laboratory- and field-exposed terrestrial isopods Porcellio scaber (Isopoda, Crustacea). Environ Toxicol Chem 25(8):2114–2122

    Article  CAS  Google Scholar 

  • Pacyna EG, Pacyna JM (2002) Global emission of mercury from anthropogenic sources in 1995. Water Air Soil Pollut 137(1–4):149–165

    Article  CAS  Google Scholar 

  • Pacyna JM, Pacyna EG, Aas W (2009) Changes of emissions and atmospheric deposition of mercury, lead, and cadmium. Atmos Environ 43:117–127

    Article  CAS  Google Scholar 

  • Paoletti MG, Hassall M (1999) Woodlice (Isopoda: Oniscidea): their potential for assessing sustainability and use as bioindicators. Agr Ecosyst Environ 74:157–165

    Article  Google Scholar 

  • Prosi F, Dallinger R (1988) Heavy metals in the terrestrial isopod Porcellio scaber Latreille. I. Histochemical and ultrastructural characterization of metal containing lysosomes. Cell Biol Toxicol 4(1):81–96

    Article  CAS  Google Scholar 

  • Sager M, Reichel G, Grüner M, Würzner H (1997) Quecksilbergehalte von Futtermittelproben in Österreich. Die Bodenkultur 48:23–32

    CAS  Google Scholar 

  • Sandoval MC, Veiga M, Hinton J, Klein B (2001) Review of biological indicators for metal mining effluents: a proposed protocol using earthworms. Proceedings of the 25th annual British Columbia reclamation symposium, Campbell River, 23–27 September, pp 67–79

  • Schilling JS, Lehman ME (2002) Bioindication of atmospheric heavy metal deposition in the Southeastern US using the moss Thuidium delicatulum. Atmos Environ 36(10):1611–1618

    Article  CAS  Google Scholar 

  • Schwesig D, Matzner E (2000) Pools and fluxes of mercury and methylmercury in two forested catchments in Germany. Sci Total Environ 260:213–223

    Article  CAS  Google Scholar 

  • Slabber S, Chown S (2002) The first record of a terrestrial crustacean, Porcellio scaber (Isopoda, Porcellionidae), from sub-Antarctic Marion Island. Polar Biol 25(11):855–858

    Google Scholar 

  • Steinnes E, Anderssor EM (1991) Atmospheric deposition of mercury in Norway: temporal and spatial trends. Water Air Soil Pollut 56(1):391–404

    Article  CAS  Google Scholar 

  • Streets DG, Zhang Q, Wu Y (2009) Projections of global mercury emissions in 2050. Environ Sci Technol 43:2983–2988

    Article  CAS  Google Scholar 

  • Talmage SS, Walton BT (1993) Food chain transfer and potential renal toxicity of mercury to small mammals at a contaminated terrestrial field site. Ecotoxicology 2(4):243–256

    Article  CAS  Google Scholar 

  • Udovic M, Drobne D, Lestan D (2009) Bioaccumulation in Porcellio scaber (Crustacea, Isopoda) as a measure of the EDTA remediation efficiency of metal-polluted soil. Environ Pollut 157(10):2822–2829

    Article  CAS  Google Scholar 

  • Van Straalen NM (1998) Evaluation of bioindicator systems derived from soil arthropod communities. Appl Soil Ecol 9(1–3):429–437

    Article  Google Scholar 

  • Vermeulen Van, den Brink NW, D`Havé H, Mubiana VK, Blust R, Bervoets L et al (2009) Habitat type-based bioaccumulation and risk assessment of metal and As contamination in earthworms, beetles and woodlice. Environ Pollut 157(11):3098–3105

    Article  CAS  Google Scholar 

  • Vilisics F, Elek Z, Lövei G, Hornung E (2007) Composition of terrestrial isopod assemblages along an urbanisation gradient in Denmark. Pedobiologia 51(1):45–53

    Article  Google Scholar 

  • Wang D, Shi X, Wei S (2003) Accumulation and transformation of atmospheric mercury in soil. Sci Total Environ 304(1–3):209–214

    Article  CAS  Google Scholar 

  • Werner R (2011) Datenextrakt aus dem GIS des Landes Vorarlberg: Niederschlagskarten, Höhenmodell, Verkehr, Siedlungszone. Amt der Vorarlberger Landesregierung, Bregenz

  • Whitfield J (2001) Vital signs. Nature 411:989–990

    Article  CAS  Google Scholar 

  • Wiener JG, Knights BC, Sandheinrich MB, Jeremiason JD, Brigham ME, Engstrom DR et al (2006) Mercury in soils, lakes, and fish in Voyageurs National Park (Minnesota): importance of atmospheric deposition and ecosystem factors. Environ Sci Technol 40:6261–6268

    Article  CAS  Google Scholar 

  • Wieser W, Dallinger R, Busch G (1977) The flow of copper through a terrestrial food chain. II. Factors influencing the copper content of isopods. Oecologia 30:265–272

    Article  Google Scholar 

  • Witzel B (2000) The influence of zinc on the uptake and loss of cadmium and lead in the woodlouse, Porcellio scaber (Isopoda, Oniscidea). Ecotoxicol Environ Saf 47(1):43–53

    Article  CAS  Google Scholar 

  • Wu Y, Wang S, Streets DG, Hao J, Chan M, Jiang J (2006) Trends in anthropogenic mercury emissions in China from 1995 to 2003. Environ Sci Technol 40:5312–5318

    Article  CAS  Google Scholar 

  • Zechmeister HG (1995) Correlation between altitude and heavy metal deposition in the Alps. Environ Pollut 89(1):73–80

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by a grant from Inatura-Erlebnis Naturschau GmbH, Dornbirn (Vorarlberg, Austria) and co-financed by a project of the Austrian Science Foundation (Project No. P 19782-B03) to R. D. We thank Margit Schmid (inatura Dornbirn) for support and Frieda Tataruch (University of Vienna, Austria) for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Dallinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedrini-Martha, V., Sager, M., Werner, R. et al. Patterns of Urban Mercury Contamination Detected by Bioindication With Terrestrial Isopods. Arch Environ Contam Toxicol 63, 209–219 (2012). https://doi.org/10.1007/s00244-012-9766-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-012-9766-3

Keywords

Navigation