Skip to main content

Advertisement

Log in

Sodium Fluxes in Tamoatá, Hoplosternum litoralle, Exposed to Formation Water from Urucu Reserve (Amazon, Brazil)

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Formation water (produce water or oil field brine) from oil and gas production usually has high concentrations of soluble salts and metals. The objective of this study was to examine the effect of formation water from Urucu Reserve, Amazon, on whole-body uptake and internal distribution of newly accumulated Na+ in juvenile tamoatá, Hoplosternum litoralle. Groups of fish were submitted to nine treatments for 3 h in 400-ml chambers: control (well water), 5% formation water, and well water with respective concentrations of 5% formation water of Ca2+, Fe, Mn, Ba2+, Fe + Ca2+, Mn + Ca2+, and Ba + Ca2+ added. Specimens of tamoatá exposed to 5% formation water presented a very high Na+ influx, probably due to the high Na+ levels in this water. Waterborne Fe and Mn stimulated Na+ influx, but Fe increased Na+ efflux, causing Na+ loss. Waterborne Mn, on the other hand, decreased Na+ efflux, reducing Na+ loss by this species. Waterborne Ca2+ also affected Na+ influx but had no significant effect on net Na+ fluxes. These results demonstrated that spilling of formation water in ion-poor Amazon rivers would dramatically disrupt osmoregulatory balance of tamoatá and probably other Amazon fish species, impairing their survival and reduce biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baldisserotto B, Copatti CE, Gomes LC, Chagas EC, Brinn RP, Roubach R (2008) Net ion fluxes in the facultative air-breather Hoplosternum littorale (tamoata) and the obligate air-breather Arapaima gigas (pirarucu) exposed to different Amazonian waters. Fish Physiol Biochem 34:405–412

    Article  CAS  Google Scholar 

  • Bury NR, Grosell M (2003) Waterborne iron acquisition by a freshwater teleost fish, zebrafish Danio rerio. J Exp Biol 206:3529–3535

    Article  Google Scholar 

  • Caliani I, Porcelloni S, Mori G, Frenzilli G, Ferraro M, Marsili L, Casini S, Fossi MC (2009) Genotoxic effects of produced waters in mosquito fish (Gambusia affinis). Ecotoxicology 18:75–80

    Article  CAS  Google Scholar 

  • Casini S, Marsili L, Fossi MC, Mori G, Bucalossi D, Porcelloni S, Caliani I, Stefanini G, Ferraro M, di Catenaja CA (2006) Use of biomarkers to investigate toxicological effects of produced water treated with conventional and innovative methods. Mar Environ Res 62:S347–S351

    Article  CAS  Google Scholar 

  • CONAMA (Conselho Nacional do Meio Ambiente) (2005) Resolução CONAMA no 357, from March 17, 2005. Diário Oficial União 53(1):58–63

  • Cooper CA, Shayeghi M, Techau ME, Capdevila DM, MacKenzie S, Durrant C, Bury NR (2007) Analysis of the rainbow trout solute carrier 11 family reveals iron import ≤pH 7.4 and a functional isoform lacking transmembrane domains 11 and 12. FEBS Lett 581:2599–2604

    Article  CAS  Google Scholar 

  • Fish JT (2009) Groundwater water treatment for iron and manganese reduction and fish rearing studies applied to the design of the Ruth Burnett Sport Fish Hatchery, Fairbanks, Alaska. Aquat Eng 41:97–108

    Article  Google Scholar 

  • Gonzalez RJ, Preest MR (1999) Ionoregulatory specializations for exceptional tolerance of ion-poor acidic waters in the neon tetra (Paracheirodon innesi). Physiol Biochem Zool 72:156–163

    Article  CAS  Google Scholar 

  • Gonzalez RJ, Wilson RW (2001) Patterns of ion regulation in acidophilic fish native to the ion-poor, acidic Rio Negro. J Fish Biol 58:1680–1690

    Article  Google Scholar 

  • Gonzalez RJ, Wood CM, Wilson RW, Patrick ML, Bergman HL, Narahara A, Val AL (1998) Effects of water pH and calcium concentration on ion balance in fish of the Rio Negro, Amazon. Physiol Zool 71:15–22

    Article  CAS  Google Scholar 

  • Gonzalez RJ, Wilson RW, Wood CM, Patrick ML, Val AL (2002) Diverse strategies for ion regulation in fish collected from the ion-poor, acidic Rio Negro. Physiol Biochem Zool 75:37–47

    Article  CAS  Google Scholar 

  • Graham J (1997) Air-breathing fishes: evolution, diversity, and adaptation. Academic Press, London

    Google Scholar 

  • Grippo RS, Dunson WA (1996) The body ion loss biomarker. 1. Interactions between trace metals and low pH in reconstituted coal mine-polluted water. Environ Toxicol Chem 15:1955–1963

    Article  Google Scholar 

  • Grosell MH, Hogstrand C, Wood CM (1997) Cu uptake and turnover in both Cu-acclimated and non-acclimated rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 38:257–276

    Article  CAS  Google Scholar 

  • Hoffmann EK, Hoffmann E, Lang F, Zadunaisky JA (2002) Control of Cl–transport in the operculum epithelium of Fundulus heteroclitus: long- and short-term salinity adaptation. Biochim Biophys Acta-Biomemb 1566:129–139

    Article  CAS  Google Scholar 

  • Hogstrand C, Wilson RW, Polgar D, Wood CM (1994) Effects of zinc on the kinetics of branchial uptake in freshwater rainbow trout during adaptation to waterborne zinc. J Exp Biol 186:55–73

    CAS  Google Scholar 

  • Holdway DA (2002) The acute and chronic effects of wastes associated with offshore oil and gas production on temperate and tropical marine ecological processes. Mar Pollut Bull 44:185–203

    Article  CAS  Google Scholar 

  • Holth TF, Nourizadeh-Lillabadi R, Blaesbjerg M, Grung M, Holbech H, Petersen GI, Alestrom P, Hylland K (2008) Differential gene expression and biomarkers in zebrafish (Danio rerio) following exposure to produced water components. Aquat Toxicol 90:277–291

    Article  CAS  Google Scholar 

  • Hunn JB (1985) Role of calcium in gill function in freshwater fishes. Comp Biochem Physiol A 82:543–547

    Article  Google Scholar 

  • Jackson RE, Reddy KJ (2007) Trace element chemistry of coal bed natural gas produced water in the Powder River Basin, Wyoming. Environ Sci Technol 41:5953–5959

    Article  CAS  Google Scholar 

  • Lie KK, Meier S, Olsvik PA (2009) Effects of environmental relevant doses of pollutants from offshore oil production on Atlantic cod (Gadus morhua). Comp Biochem Physiol C 150:141–149

    Google Scholar 

  • Maco Garcia JT (1997) Influência da água de formação da extração de petróleo do Rio Urucu sobre aspectos hematológicos e conteúdo iônico de Colossoma macropomum e Glyptoperichthys joselimaianus. MSc thesis, Instituto Nacional de Pesquisa da Amazônia/Universidade do Amazonas, Manaus

  • Manfra L, Moltedo G, Lamberti CV, Maggi C, Finoia MG, Giuliani S, Onorati F, Gabellini M, Di Mento R, Cicero AM (2007) Metal content and toxicity of produced formation water (PFW): study of the possible effects of the discharge on marine environment. Arch Environ Contam Toxicol 53:183–190

    Article  CAS  Google Scholar 

  • McDonald DG, Tang Y, Boutilier RG (1989) Acid and ion transfer across the gills of fish: mechanisms and regulation. Can J Zool 67:3046–3054

    Article  CAS  Google Scholar 

  • Nevo Y, Nelson N (2006) The NRAMP family of metal-ion transporters. Biochim Biophys Acta-Mol Cell Res 1763:609–620

    Article  CAS  Google Scholar 

  • Pantaleão SD, Alcantara AV, Alves JDH, Spano MA (2006) The piscine micronucleus test to assess the impact of pollution on the Japaratuba River in Brazil. Environ Mol Mutagen 47:219–224

    Article  Google Scholar 

  • Petróbras (2008) Provincia petrolífera de Urucu. O desafio de produzir ouro negro na Amazônia. http://www2.petrobras.com.br/minisite/urucu/urucu.html. Accessed 28 Jan 2010

  • Prodocimo V, Galvez F, Freire CA, Wood CM (2007) Unidirectional Na+ and Ca2+ fluxes in two euryhaline teleost fishes, Fundulus heteroclitus and Oncorhynchus mykiss, acutely submitted to a progressive salinity increase. J Comp Physiol B 177:519–528

    Article  CAS  Google Scholar 

  • Rafii B, Coutinho C, Otulakowski G, O’Brodovich H (2000) Oxygen induction of epithelial Na+ transport requires heme proteins. Am J Physiol C 278:L399–L406

    CAS  Google Scholar 

  • Reader JP, Morris R (1988) Effects of aluminum and pH on calcium fluxes, and effects of cadmium and manganese on calcium and sodium fluxes in brown trout (Salmo trutta L.). Comp Biochem Physiol C 91:449–457

    Article  Google Scholar 

  • Stephens SM, Frankling SC, Stagg RM, Brown JA (2000) Sub-lethal effects of exposure of juvenile turbot to oil produced water. Mar Pollut Bull 40:928–937

    Article  CAS  Google Scholar 

  • Sundt RC, Baussant T, Beyer J (2009) Uptake and tissue distribution of C4–C7 alkylphenols in Atlantic cod (Gadus morhua): relevance for biomonitoring of produced water discharges from oil production. Mar Pollut Bull 58:72–79

    Article  CAS  Google Scholar 

  • Val AL, Almeida-Val VMF (1995) Fishes of the Amazon and their environments. Physiological and biochemical features. Springer-Verlag, Heidelberg

    Google Scholar 

  • Wood CM (1992) Flux measurements as indices of H+ and metal effects on freshwater fish. Aquat Toxicol 22:239–264

    Article  CAS  Google Scholar 

  • Woodall DW, Rabalais NN, Gambrell RP, DeLaune RD (2003) Comparing methods and sediment contaminant indicators for determining produced water fate in a Louisiana estuary. Mar Pollut Bull 46:731–740

    Article  CAS  Google Scholar 

  • Zhu SQ, King SC, Haasch ML (2008) Biomarker induction in tropical fish species on the Northwest Shelf of Australia by produced formation water. Mar Environ Res 65:315–324

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank National Research Council of Brazil (CNPq; Conselho Nacional de Desenvolvimento Científico e Tecnológico) for fellowships to B. Baldisserotto, L.O. Garcia, L.C. Gomes, and A.L. Val and Rio Grande do Sul State Research Foundation (FAPERGS; Fundação de Amparo à Pesquisa no Rio Grande do Sul) for financial support to B. Baldisserotto. In addition, this work was funded by CNPq and Amazonas State Research Foundation (FAPEAM; Fundação de Amparo à Pesquisa do Estado do Amazonas)–INCT ADAPTA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo Baldisserotto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldisserotto, B., Garcia, L.O., Benaduce, A.P. et al. Sodium Fluxes in Tamoatá, Hoplosternum litoralle, Exposed to Formation Water from Urucu Reserve (Amazon, Brazil). Arch Environ Contam Toxicol 62, 78–84 (2012). https://doi.org/10.1007/s00244-011-9673-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-011-9673-z

Keywords

Navigation