Skip to main content
Log in

Characterization of Cadmium Uptake and Translocation in a Cadmium-Sensitive Mutant of Rice (Oryza sativa L. ssp. japonica)

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

To understand the physiological mechanism that confers Cd sensitivity/tolerance, Cd uptake and translocation by Cd-sensitive mutant and wild-type rice seedlings were characterized using radioactive tracer. Time-dependent Cd accumulation during 210 min was 1.8-fold higher in roots of the mutant than of wild-type rice. The kinetics of Cd uptake showed that two processes were involved: a first, fast, probably passive process and a second, slower, possibly physiological process. After 96 h, more Cd was translocated to the shoot of mutant compared with wild-type rice. Low temperature (2°C), carbonyl cyanide m-chlorophenylhydrazone, and dicyclohexylcarbodiimide inhibited Cd accumulation to a greater extent in mutant than wild-type rice, suggesting that metabolism plays a more important role in Cd uptake for the rice mutant. Cd uptake into the symplasm is linked to Ca2+ transport, as revealed by the inhibition of Cd accumulation by La and high Ca by equal percentages in both mutant and wild-type rice. Cd uptake and root-to-shoot translocation in the mutant were inhibited more markedly by Zn and Mn than in wild-type rice. This indicates that transport sites other than entry into the root symplasm are also stimulated in the mutant. The results suggest that enhanced absorption into the root and further accumulation in the shoot is one of the mechanisms involved in Cd accumulation and sensitivity, and the difference in Cd uptake and root-to-shoot translocation between mutant and wild-type rice may be mediated partly by energy supply and transporters for Zn and Mn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Babourina O, Shabala S, Newman I (2000) Verapamil-induced kinetics of ion flux in oat seedlings. Austr J Plant Physiol 27:1031–1040

    CAS  Google Scholar 

  • Belimov AA, Safronova VI, Tsyganov VE, Borisov AY, Kozhemyakov AP, Stepanok VV, Martenson AM, Gianinazzi-Pearson V, Tikhonovich IA (2003) Genetic variability in tolerance to cadmium and accumulation of heavy metals in pea (Pisum sativum L.). Euphytica 131:25–35. doi:10.1023/A:1023048408148

    Article  CAS  Google Scholar 

  • Bert V, Meerts P, Saumitou-Laprade P, Salis P, Gruber W, Verbruggen N (2003) Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant Soil 249:9–18. doi:10.1023/A:1022580325301

    Article  CAS  Google Scholar 

  • Blaudez D, Botton B, Chalot M (2000) Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus. Microbiology 146:1109–1117

    CAS  Google Scholar 

  • Burzyński M, Żurek A (2007) Effects of copper and cadmium on photosynthesis in cucumber cotyledons. Photosynthetica 45:239–244. doi:10.1007/s11099-007-0038-9

    Article  Google Scholar 

  • Cataldo DA, Garland TR, Wildung RE (1983) Cadmium uptake kinetics in intact soybean plants. Plant Physiol 73:844–848

    Article  CAS  Google Scholar 

  • Clemens S, Antosiewicz DM, Ward JM, Schachtman DP, Schroeder JI (1998) The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proc Natl Acad Sci USA 95:12043–12048. doi:10.1073/pnas.95.20.12043

    Article  CAS  Google Scholar 

  • Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Poll 98:29–36. doi:10.1016/S0269-7491(97)00110-3

    Article  CAS  Google Scholar 

  • de Meeus C, Eduljee GH, Hutton M (2002) Assessment and management of risks arising from exposure to cadmium in fertilisers I. Sci Total Environ 291:167–187. doi:10.1016/S0048-9697(01)01098-1

    Article  Google Scholar 

  • Dudka S, Piotrowska M, Chlopecka A (1994) Effect of elevated concentrations of Cd and Zn in soil on spring wheat yield and the metal contents of the plants. Water Air Soil Poll 76:333–341. doi:10.1007/BF00482710

    Article  CAS  Google Scholar 

  • Gerritse RG, Van Driel W, Smilde KW, Van Luit B (1983) Uptake of heavy metals by crops in relation to their concentration in the soil solution. Plant Soil 75:393–404. doi:10.1007/BF02369973

    Article  CAS  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198. doi:10.1016/S0005-2736(00)00138-3

    Article  CAS  Google Scholar 

  • Hart JJ, Di Tomaso JM, Linscott DL, Kochian LV (1992) Characterization of the transport and cellular compartmentation of paraquat in roots of intact maize seedlings. Pestic Biochem Physiol 43:212–222. doi:10.1016/0048-3575(92)90034-W

    Article  CAS  Google Scholar 

  • Hart JJ, Welch RM, Norvell WA, Sullivan LA, Kochian LV (1998) Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars. Plant Physiol 116:1413–1420. doi:10.1104/pp.116.4.1413

    Article  CAS  Google Scholar 

  • Hart JJ, Welch RM, Norvell WA, Kochian LV (2002) Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings. Physiol Plant 116:73–78. doi:10.1034/j.1399-3054.2002.1160109.x

    Article  CAS  Google Scholar 

  • He JY, Zhu C, Ren YF, Yan YP, Jiang DA (2006) Genotypic variation in grain cadmium concentration of lowland rice. J Plant Nutr Soil Sci 169:711–716. doi:10.1002/jpln.200525101

    Article  CAS  Google Scholar 

  • He JY, Ren YF, Zhu C, Yan YP, Jiang DA (2008) Effect of Cd on growth, photosynthetic gas exchange, and chlorophyll fluorescence of wild and Cd-sensitive mutant rice. Photosynthetica 46(3):466–470. doi:10.1007/s11099-008-0080-2

    Article  CAS  Google Scholar 

  • Huang B, Kuo S, Bembenek R (2004) Availability of cadmium in some phosphorus fertilizers to field-grown lettuce. Water Air Soil Pollut 158:37–51. doi:10.1023/B:WATE.0000044832.04770.41

    Article  CAS  Google Scholar 

  • Jalil A, Selles F, Clarke JM (1994) Effect of cadmium on growth and the uptake of cadmium and other elements by durum wheat. J Plant Nutr 17:1839–1858. doi:10.1080/01904169409364851

    Article  CAS  Google Scholar 

  • Lasat MM, Baker AJM, Kochian LV (1996) Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi. Plant Physiol 112:1715–1722

    CAS  Google Scholar 

  • Lu LL, Tian SK, Yang XE, Wang XC, Brown P, Li TQ, He ZL (2008) Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii. J Exp Bot 59(11):3203–3213. doi:10.1093/jxb/ern174

    Article  CAS  Google Scholar 

  • Metwally A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot 56:167–178

    CAS  Google Scholar 

  • Pawlik B, Skowronski T (1994) Transport and toxicity of cadmium: its regulation in the cyanobacterium Synechocystis aquatilis. Environ Exp Bot 34:225–233. doi:10.1016/0098-8472(94)90043-4

    Article  CAS  Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transporter in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci USA 97:4956–4960. doi:10.1073/pnas.97.9.4956

    Article  CAS  Google Scholar 

  • Scebba F, Arduini I, Ercoli L, Sebastiani L (2006) Cadmium effects on growth and antioxidant enzymes activities in Miscanthus sinensis. Biol Plant 50(4):688–692. doi:10.1007/s10535-006-0107-0

    Article  CAS  Google Scholar 

  • Schat H, Kuiper E, Ten Bookum WM, Vooijs R (1993) A general model for the genetic control of copper tolerance in Silene vulgaris: evidence from crosses between plants from different tolerant populations. Heredity 70:142–147. doi:10.1038/hdy.1993.23

    Article  CAS  Google Scholar 

  • Tripathi RD, Rai UN, Gupta M, Yunus M, Chandra P (1995) Cadmium transport in submerged macrophyte Ceratophyllum demersum L. in presence of various metabolic inhibitors and calcium channel blockers. Chemosphere 31:3783–3791. doi:10.1016/0045-6535(95)00249-8

    Article  CAS  Google Scholar 

  • Van Vliet C, Anderson CR, Cobbett CS (1995) Copper-sensitive mutant of Arabidopsis thaliana. Plant Physiol 109:871–878. doi:10.1104/pp.109.3.871

    Article  Google Scholar 

  • Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richard P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576:306–312. doi:10.1016/j.febslet.2004.09.023

    Article  CAS  Google Scholar 

  • Welch RM, Norvell WA (1999) Mechanisms of cadmium uptake, translocation and deposition in plants. In: McLaughlin MJ, Singh BR (eds) Cadmium in soils and plants. Kluwer Academic, Dordrecht, pp 125–150

    Google Scholar 

  • Zhao FJ, Hamon RE, Lombi E, McLaughlin MJ, McGrath SP (2002) Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 53:535–543. doi:10.1093/jexbot/53.368.535

    Article  CAS  Google Scholar 

  • Zhu ZG, Fu YP, Xiao H, Hu GC, Yu YH, Si HM, Zhang JL, Sun ZX (2001) Construction of rice mutant pool inserted the maize transposable element Ac/Ds and genetic analysis for several mutants. Chin J Biotechnol 17:288–292 (in Chinese)

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the 973 Project of the Science and Technology Ministry of China (2002CB410804) and the Natural Science Foundation of Guizhou Province (20072053 and 20072058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Y. He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J.Y., Ren, Y.F., Wang, F.J. et al. Characterization of Cadmium Uptake and Translocation in a Cadmium-Sensitive Mutant of Rice (Oryza sativa L. ssp. japonica). Arch Environ Contam Toxicol 57, 299–306 (2009). https://doi.org/10.1007/s00244-008-9273-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-008-9273-8

Keywords

Navigation