Skip to main content
Log in

Hyperoxaluric rats do not exhibit alterations in renal expression patterns of Slc26a1 (SAT1) mRNA or protein

  • Original Paper
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

Little is known about oxalate transport in renal epithelia under basal conditions, let alone in hyperoxaluria when the capacity for renal oxalate excretion is increased. Sulfate anion transporter 1 (SAT1, Slc26a1) is considered to be a major basolateral anion-oxalate exchanger in the proximal tubule and we hypothesized its expression may correlate with urinary oxalate excretion. We quantified changes in the renal expression of SAT1 mRNA and protein in two rat models, one with hyperoxaluria (HYP) and one with renal insufficiency (HRF) induced by hyperoxaluria. The hyperoxaluria observed in the HYP group could not simply be ascribed to changes in SAT1 mRNA or protein abundance. However, when hyperoxaluria was accompanied by renal insufficiency, significant reductions in SAT1 mRNA and protein were detected in medullary and papillary tissue. Together, the results indicate that transcriptional modulation of the SAT1 gene is not a significant component of the hyperoxaluria observed in these rat models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hatch M (1993) Oxalate status in stone-formers. Two distinct hyperoxaluric entities. Urol Res 21:55–59

    Article  PubMed  CAS  Google Scholar 

  2. Danpure CJ (2005) Molecular etiology of primary hyperoxaluria type 1: new directions for treatment. Am J Nephrol 25:303–310

    Article  PubMed  Google Scholar 

  3. Hatch M, Freel RW (2005) Intestinal transport of an obdurate anion: oxalate. Urol Res 33:1–16

    Article  PubMed  CAS  Google Scholar 

  4. Knight TF, Sansom SC, Senekjian HO, Weinman EJ (1981) Oxalate secretion in the rat proximal tubule. Am J Physiol 240:F295–F298

    PubMed  CAS  Google Scholar 

  5. Senekjian HO, Weinman EJ (1982) Oxalate transport by proximal tubule of the rabbit kidney. Am J Physiol 243:F271–F275

    PubMed  CAS  Google Scholar 

  6. Hatch M, Freel RW (2008) The roles and mechanisms of intestinal oxalate transport in oxalate homeostasis. Semin Nephrol 28:143–151

    Article  PubMed  CAS  Google Scholar 

  7. Hatch M, Freel RW (2003) Renal and intestinal handling of oxalate following oxalate loading in rats. Am J Nephrol 23:18–26

    Article  PubMed  CAS  Google Scholar 

  8. Kuo SM, Aronson PS (1988) Oxalate transport via the sulfate/HCO3 exchanger in rabbit renal basolateral membrane vesicles. J Biol Chem 263:9710–9717

    PubMed  CAS  Google Scholar 

  9. Greger R, Lang F, Oberleithner H, Deetjen P (1978) Handling of oxalate by the rat kidney. Pflugers Arch 374:243–248

    Article  PubMed  CAS  Google Scholar 

  10. Weinman EJ, Frankfurt SJ, Ince A, Sansom S (1978) Renal tubular transport of organic acids. Studies with oxalate and para-aminohippurate in the rat. J Clin Invest 61:801–806

    Article  PubMed  CAS  Google Scholar 

  11. Krick W, Schnedler N, Burckhardt G, Burckhardt BC (2009) Ability of SAT-1 to transport sulfate, bicarbonate, or oxalate under physiological conditions. Am J Physiol Renal Physiol 297:F145–F154

    Article  PubMed  CAS  Google Scholar 

  12. Brandle E, Bernt U, Hautmann RE (1998) In situ characterization of oxalate transport across the basolateral membrane of the proximal tubule. Pflugers Arch 435:840–849

    Article  PubMed  CAS  Google Scholar 

  13. Dawson PA, Russell CS, Lee S, McLeay SC, van Dongen JM, Cowley DM, Clarke LA, Markovich D (2010) Urolithiasis and hepatotoxicity are linked to the anion transporter SAT1 in mice. J Clin Invest 120:706–712

    Article  PubMed  CAS  Google Scholar 

  14. Karniski LP, Lotscher M, Fucentese M, Hilfiker H, Biber J, Murer H (1998) Immunolocalization of SAT-1 sulfate/oxalate/bicarbonate anion exchanger in the rat kidney. Am J Physiol 275:F79–F87

    PubMed  CAS  Google Scholar 

  15. Mount DB, Romero MF (2004) The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch 447:710–721

    Article  PubMed  CAS  Google Scholar 

  16. Xie Q, Welch R, Mercado A, Romero MF, Mount DB (2002) Molecular characterization of the murine Slc26a6 anion exchanger: functional comparison with Slc26a1. Am J Physiol Renal Physiol 283:F826–F838

    PubMed  Google Scholar 

  17. Green ML, Hatch M, Freel RW (2005) Ethylene glycol induces hyperoxaluria without metabolic acidosis in rats. Am J Physiol Renal Physiol 289:F536–F543

    Article  PubMed  CAS  Google Scholar 

  18. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  19. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  20. Steel RG, Torrie JH (1980) Principles and procedures of statistics, 2nd edn. McGraw-Hill Book Company, New York

    Google Scholar 

  21. SAS (1985) SAS User’s Guide: Basics, Version, 5th edn. SAS Institute Inc., Carey

  22. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    Google Scholar 

  23. Hatch M, Freel RW (2003) Angiotensin II involvement in adaptive enteric oxalate excretion in rats with chronic renal failure induced by hyperoxaluria. Urol Res 31:426–432

    Article  PubMed  CAS  Google Scholar 

  24. Aronson PS (1989) The renal proximal tubule: a model for diversity of anion exchangers and stilbene-sensitive anion transporters. Annu Rev Physiol 51:419–441

    Article  PubMed  CAS  Google Scholar 

  25. Regeer RR, Lee A, Markovich D (2003) Characterization of the human sulfate anion transporter (hsat-1) protein and gene (SAT1; SLC26A1). DNA Cell Biol 22:107–117

    Article  PubMed  CAS  Google Scholar 

  26. Markovich D, Murer H, Biber J, Sakhaee K, Pak C, Levi M (1998) Dietary sulfate regulates the expression of the renal brush border Na/Si cotransporter NaSi-1. J Am Soc Nephrol 9:1568–1573

    PubMed  CAS  Google Scholar 

  27. Sagawa K, DuBois DC, Almon RR, Murer H, Morris ME (1998) Cellular mechanisms of renal adaptation of sodium dependent sulfate cotransport to altered dietary sulfate in rats. J Pharmacol Exp Ther 287:1056–1062

    PubMed  CAS  Google Scholar 

  28. Freel RW, Hatch M, Green M, Soleimani M (2006) Ileal oxalate absorption and urinary oxalate excretion are enhanced in Slc26a6-null mice. Am J Physiol (Gastrointest Liver Physiol) 290:G719–G728

    Article  CAS  Google Scholar 

  29. Schnedler N, Burckhardt G, Burckhardt BC (2011) Glyoxylate is a substrate of the sulfate–oxalate exchanger, SAT-1, and increases its expression in HepG2 cells. J Hepatol 54:513–520

    Article  PubMed  CAS  Google Scholar 

  30. Fernandes I, Laouari D, Tutt P, Hampson G, Friedlander G, Silve C (2001) Sulfate homeostasis, NaSi-1 cotransporter, and SAT-1 exchanger expression in chronic renal failure in rats. Kidney Int 59:210–221

    Article  PubMed  CAS  Google Scholar 

  31. Green ML, Freel RW, Hatch M (2005) Lipid peroxidation is not the underlying cause of renal injury in hyperoxaluric rats. Kidney Int 68:1–10

    Article  Google Scholar 

  32. Quondamatteo F, Krick W, Hagos Y, Kruger MH, Neubauer-Saile K, Herken R, Ramadori G, Burckhardt G, Burckhardt BC (2006) Localization of the sulfate/anion exchanger in the rat liver. Am J Physiol Gastrointest Liver Physiol 290:G1075–G1081

    Article  PubMed  CAS  Google Scholar 

  33. Markovich D (2001) Physiological roles and regulation of mammalian sulfate transporters. Physiol Rev 81:1499–1533

    PubMed  CAS  Google Scholar 

  34. Greger R (1981) In: Greger R, Lang F, Silbernagel S (eds) Renal transport of organic substances, Springer-Verlag, Berlin, p 224

  35. Sigmon D, Kumar S, Carpenter B, Miller T, Menon M, Scheid C (1991) Oxalate transport in renal tubular cells from normal and stone-forming animals. Am J Kidney Dis 17:376–380

    PubMed  CAS  Google Scholar 

  36. Chandhoke PS, Fan J (2000) Transport of oxalate across the rabbit papillary surface epithelium. J Urol 164:1724–1728

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The technical assistance of Michael Green, Ph. D., Candi Morris, and Bonnie Murphey is greatly appreciated. This work was supported by grants from the National Institutes of Health (DK60544, DK56245).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marguerite Hatch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freel, R.W., Hatch, M. Hyperoxaluric rats do not exhibit alterations in renal expression patterns of Slc26a1 (SAT1) mRNA or protein. Urol Res 40, 647–654 (2012). https://doi.org/10.1007/s00240-012-0480-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-012-0480-4

Keywords

Navigation