Skip to main content
Log in

Afferent bladder nerve activity in the rat: a mechanism for starting and stopping voiding contractions

  • Original Paper
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

The objective of this work was to study the relation between afferent bladder nerve activity and bladder mechanics and the mechanisms that initiate and terminate bladder contractions. Bladder nerve activity, pressure and volume were recorded during the micturition cycle in the rat. The highest correlation was found between afferent nerve activity and stress (pressure×volume). Afferent nerve activity depended linearly on stress within 6%, and both slope and offset were independent of the bladder-filling rate. The levels of afferent bladder nerve activity at the onset and cessation of efferent firing to the bladder were highly reproducible with coefficients of variation of ≤17%. We propose a model in which afferent activity is proportional to bladder wall stress, and bladder contraction is initiated when afferent activity exceeds a threshold due to an increasing pressure and volume. The contraction continues until afferent activity drops below a threshold again as a result of a decreasing volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Andresen M, Yang M (1989) Interaction among unitary spike trains: implications for whole nerve measurements. Am J Physiol (Regul Integ Comp Physiol 25) 256: R997

    Google Scholar 

  2. Bahns E, Ernsberger U, Jänig W, Nelke A (1986) Functional characteristics of lumbar visceral afferent fibres from the urinary bladder and the urethra in the cat. Pflugers Archiv 407: 510

    CAS  PubMed  Google Scholar 

  3. Bennett BC, Kruse MN, Roppolo JR, Flood HD, Fraser M, de Groat WC (1995) Neural control of urethral outlet activity in vivo: role of nitric oxide. J Urol 153: 2004

    Article  CAS  PubMed  Google Scholar 

  4. Bíró G, Partridge LD (1971) Analysis of mulitiunit spike records. J Appl Physiol 30: 521

    PubMed  Google Scholar 

  5. Buss R, Shefchyk S (1999) Excitability changes in sacral afferents innervating the urethra, perineum and hindlimb skin of the cat during micturition. J Physiol 514: 593

    CAS  PubMed  Google Scholar 

  6. Chien C, Yu H, Lin T, Chen C (2000) Neural mechanisms of impaired micturition reflex in rats with acute partial outlet obstruction. Neuroscience 96: 221

    Article  CAS  PubMed  Google Scholar 

  7. Conte B, Maggi CA, Parlani M, Lopez G, Manzini S, Giachetti A (1991) Simultaneous recording of vesical and urethral pressure in Urethane-anesthetized rats: effect of neuromuscular blocking agents on the activity of the external urethral sphincter. J Pharmacol Methods 26: 161

    Article  CAS  PubMed  Google Scholar 

  8. Downie JW, Armour JA (1992) Mechanoreceptor afferent activity compared with receptor field dimensions and pressure changes in feline urinary bladder. Can J Physiol Pharmacol 70: 1457

    CAS  PubMed  Google Scholar 

  9. Griffiths D (1980). Urodynamics. Adam Hilger, Bristol

  10. Groen J, van Mastrigt R, Bosch R (1997) Computer simulation of micturition based on a detailed physiological model. Urodynamica 7: 36

    Google Scholar 

  11. Horst P, Bauer M, Veelken R, Unger T (1988) A new method for collecting urine directly from the ureter in conscious unrestrained rats. Ren Physiol Biochem 11: 325

    CAS  PubMed  Google Scholar 

  12. Hosein RA, Griffiths DJ (1990) Computer simulation of the neural control of bladder and urethra. Neurourol Urodyn 9: 601

    Google Scholar 

  13. Hopp FA, Seagard JL, Kampine JP (1986) Comparison of four methods of averaging nerve activity. Am J Physiol(Regul Integ Comp Physiol 20) 251: R700

    Google Scholar 

  14. Jancsó G, Király F, Joó F, Suchs G, Nagy A (1985) Selective degeneration by capsaicin of a subpopulation of primary sensory neurons. Neurosci Lett 59:209

    Article  PubMed  Google Scholar 

  15. Jiang W, Morrison J (1996) Sensitization of pelvic nerve afferent neurones from the rat. J Auton Nerv Syst 58: 187

    Article  Google Scholar 

  16. Kakizaki H, De Groat W (1997) Reorganization of somato-urethral reflexes following spinal cord injury in the rat. J Urol 158: 1562

    Article  CAS  PubMed  Google Scholar 

  17. Kruse M, Belton A, De Groat W (1993) Changes in bladder and external urethral sphincter function after spinal cord injury in the rat. Am J Physiol (Regul Integ Comp Physiol 33) 264: R1157

    Google Scholar 

  18. Lee J, Tillig B, Perkash I, Constantinou C (1998) Effect of alpha1 adrenoceptor antagonist on the urodynamics of the upper and lower urinary tract of the male rat. Neurourol Urodyn 17: 213

    Article  PubMed  Google Scholar 

  19. Le Feber J, van Asselt E, van Mastrigt R (1997) Neurophysiological modeling of voiding in rats: bladder pressure and postganglionic bladder nerve activity. Am J Physiol (Regul Integ Comp Physiol 41) 272: R413

    Google Scholar 

  20. MacIver M, Tanelian D (1993) Free nerve ending terminal morphology is fiber type specific for A delta and C fibers innervating rabbit corneal epithelium. J Neurophysiol 69: 1779

    CAS  PubMed  Google Scholar 

  21. Maggi CA, Giuliani S, Santicioli P, Meli A (1986) Analysis of factors involved in determining urinary bladder voiding cycle in urethan-anesthetized rats. Am J Physiol (Regul Integ Comp Physiol 20) 251: R250

    Google Scholar 

  22. Maggi CA, Meli A (1986) Do “conscious “ and “reflex” micturition have separate sensory input ? Implications for clinical urodynamics. Neurourol Urodyn 5: 563

    Google Scholar 

  23. Maggi C, Conte B, Furio M, Santicioli P, Giuliani S, Meli A (1989) Further studies on mechanisms regulating the voiding cycle of the rat urinary bladder. Gen Pharmac 20: 833

    Article  CAS  Google Scholar 

  24. Maggi CA, Conte B (1990) Effect of urethane anesthesia on the micturition reflex in capsaicin-treated rats. J Auton Nerv Syst 30: 247

    Article  CAS  PubMed  Google Scholar 

  25. Mallory B, Steers WD, De Groat WC (1989) Electrophysiological study of micturition reflexes in rats. Am J Physiol (Regul Integ Comp Physiol 26) 257: R410

    Google Scholar 

  26. Mersdorf A, Schmidt R, Tanagho E (1993) Urodynamic evaluation and electrical and pharmacologic neurostimulation. The rat model. Urol Res 21: 199

    CAS  PubMed  Google Scholar 

  27. Morrison JFB, Sato A, Sato Y, Yamanishi T (1995) The influence of afferent inputs from skin and viscera on the activity of the bladder and the skeletal muscle surrounding the urethra in the rat. Neurosci Res 23: 195

    Article  CAS  PubMed  Google Scholar 

  28. Morrison JFB, Kibble A, Jiang W (1998) Sensory mechanisms in the urinary tract. J Physiol 507.P: 2S

  29. Morrison J (1999) The activation of bladder wall afferents. Exp Physiol 84: 131

    CAS  PubMed  Google Scholar 

  30. Moss N, Harrington W, Tucker M (1997) Pressure, volume, and chemosensitivity in afferent innervation of urinary bladder in rats. Am J Physiol (Regul Integ Comp Physiol 41) 272: R695

    Google Scholar 

  31. Namasivayam S, Eardley I, Morrison J (1998) A novel in vitro bladder pelvic nerve afferent model in the rat. Br J Urol 82: 902

    Article  CAS  PubMed  Google Scholar 

  32. Satchell P, Vaughan C (1994) Bladder wall tension and mechanoreceptor discharge. Pflugers Arch 426: 304

    CAS  PubMed  Google Scholar 

  33. Schmidt EM (1984) Instruments for sorting neuroelectric data: a review. J Neurosci Methods 12: 1

    Article  CAS  PubMed  Google Scholar 

  34. Sengupta J, Gebhart G (1994) Mechanosensitive properties of pelvic nerve afferent fibers innervating the urinary bladder of the rat. J Neurophysiol 72: 2420

    CAS  PubMed  Google Scholar 

  35. Shafik A, Shafik AA, El-Sibai O, Ahmed I (2003) Role of positive urethrovesical feedback in vesical evacuation. The concept of a second micturition reflex: the urethrovesical reflex. World J Urol 21: 167

    Article  PubMed  Google Scholar 

  36. Shefchyk S (2001) Sacral spinal interneurones and the control of urinary bladder and urethral sphincter muscle function. J Physiol 533: 57

    CAS  PubMed  Google Scholar 

  37. Steers W, de Groat W (1988) Effect of bladder outlet obstruction on micturition reflex pathways in the rat. J Urol 140: 864

    CAS  PubMed  Google Scholar 

  38. Thor K, Muhlhauser MA (1999) Vesicoanal, urethroanal, and urethrovesical reflexes initiated by lower urinary tract irritation in the rat. Am J Physiol (Regul Integ Comp Physiol 46) 277: R1002

    Google Scholar 

  39. Van Asselt E, le Feber J, van Mastrigt R (1999) Threshold for efferent bladder nerve firing in the rat. Am J Physiol 276 (Regul Integ Comp Physiol 45): R1819

    PubMed  Google Scholar 

  40. Van Duin F, Rosier PFWM, Rijkhoff NJM, van Kerrebroeck PEV, Debruyne FMJ, Wijkstra H (1998) A computer model of the neural control of the lower urinary tract. Neurourol Urodyn 17: 175

    Article  PubMed  Google Scholar 

  41. Van Mastrigt R (1977) A system approach to the passive properties of the urinary bladder in the collection phase. PhD thesis, Erasmus University, Rotterdam

  42. Van Mastrigt R, Coolsaet B, van Duyl W (1978) Passive properties of the urinary bladder in the collection phase. Med Biol Eng Comput 16: 471

    PubMed  Google Scholar 

  43. Wiemer W, Kaack D, Kezdi P (1975) Comparative evaluation of methods for quantification of neural activity. Med Biol Eng 13: 358

    CAS  PubMed  Google Scholar 

  44. Winter DL (1971) Receptor characteristics and conduction velocities in bladder afferents. J Psychiat Res 8: 225

    Article  CAS  PubMed  Google Scholar 

  45. Yaksh TL, Durant PA, Brent CR (1986) Micturition in rats: a chronic model for study of bladder function and effect of anesthetics. Am J Physiol (Regul Integ Comp Physiol 20) 251: R1177

    Google Scholar 

  46. Yoshimura N, Erdman S, Snider M, De Groat W (1998) Effects of spinal cord injury on neurofilament immunoreactivity and capsaicin sensitivity in rat dorsal root ganglion neurons innervating the urinary bladder. Neuroscience 83: 633

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Dutch Kidney Foundation (grant C95.1429). J. le Feber currently works at the Department of Mathematics and Computing Sciences of the University of Groningen and is grateful to this institution for the permission given to revise this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Els van Asselt.

Appendix

Appendix

Calculation of bladder wall tension (T) and stress (σ).

The bladder is approximated to a sphere with radius R (Fig. 9):

Fig. 9
figure 9

Calculation of bladder wall tension and stress. The bladder is approximated to a sphere with radius R. The force that drives the two semi-spheres apart is balanced by the force keeping them together: Ftension. Tension is calculated as Ftension/(circumference of cross section) and stress as Ftension/(area of cross section)

Tension

The ring area, Aring, can be calculated as

$$ A_{{ring}} = 2\pi \cdot R \cdot \cos \alpha \cdot R \cdot d\alpha = 2\pi R^{2} \cdot \cos \alpha \cdot d\alpha $$
(A1)

The force on this ring, Fring equals P·Aring. P is bladder pressure.

The vertical component, Fring,up, equals Fring·sinα. Thus:

$$ F_{{ring,up}} = 2\pi \cdot R^{2} \cdot P \cdot \cos \alpha \cdot \sin \alpha \cdot d\alpha $$
(A2)

Integration yields the force that drives the two semispheres apart, Fup:

$$ F_{{up}} \begin{array}{*{20}c} {{ = {\int\limits_0^{\pi /2} {\pi \cdot R^{2} } }P \cdot 2\sin \alpha \cos \alpha \cdot d\alpha }} \\ {{\left. { = \pi \cdot R^{2} P\sin ^{2} \alpha } \right|^{{\pi /2}}_{0} }} \\ {{ = \pi \cdot R^{2} \cdot P}} \\ \end{array} $$
(A3)

The force that keeps both semispheres together, Ftension, equals Fup. Wall tension is defined as Ftension divided by the circumference of the cross section:

$$ T = \frac{{\pi \cdot R^{2} P}} {{2\pi \cdot R}} = P \cdot R/2 $$
(A4)

Stress

Stress (σ) is defined as Ftension divided by the area of the cross section. If d is the wall thickness, this area equals π(R+d)2−πR2=2πRd+πd2. Assuming that d<<R yields:

$$ \sigma _{{thinwall}} = \frac{{\pi \cdot R^{2} P}} {{2\pi \cdot Rd}} = \frac{{PR}} {{2d}} $$
(A5)

However, when the bladder is almost empty this approximation is not valid.

With a non-negligible wall thickness, the tangential stress in the wall at radius r can be calculated [41]:

$$ \sigma {\left( r \right)} = \frac{{P_{{in}} r^{3}_{{in}} - P_{{out}} r^{3}_{{out}} }} {{r^{3}_{{out}} - r^{3}_{{in}} }} + \frac{{r^{3}_{{in}} r^{3}_{{out}} }} {{2r^{3} }} \cdot \frac{{P_{{in}} - P_{{out}} }} {{r^{3}_{{out}} - r^{3}_{{in}} }} $$
(A6)
$$ \sigma {\left( r \right)} = \frac{{P_{{in}} r^{3}_{{in}} }} {{2r^{3} }} \cdot \frac{{r^{3}_{{out}} + 2r^{3} }} {{r^{3}_{{out}} - r^{3}_{{in}} }} - \frac{{P_{{out}} r^{3}_{{out}} }} {{2r^{3} }} \cdot \frac{{r^{3}_{{in}} + 2r^{3} }} {{r^{3}_{{out}} - r^{3}_{{in}} }} $$
(A7)

With Pin=pressure inside sphere; Pout=pressure outside sphere; rin=inner radius; rout=R=outer radius.

With V=bladder volume and Vt=tissue volume:

$$ V_{t} = \raise0.5ex\hbox{$\scriptstyle 4$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 3$}\pi {\left( {r^{3}_{{out}} - r^{3}_{{in}} } \right)} \Leftrightarrow {\left( {r^{3}_{{out}} - r^{3}_{{in}} } \right)} = \frac{{3V_{t} }} {{4\pi }} $$
(A8)
$$ V = \raise0.5ex\hbox{$\scriptstyle 4$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 3$}\pi r^{3}_{{in}} \Leftrightarrow r^{3}_{{in}} = \frac{{3V}} {{4\pi }} $$
(A9)

with (A.7), (A.8) and (A.9):

$$ \sigma {\left( {r_{{in}} } \right)} = \frac{{3P_{{in}} }} {{2V_{t} }} \cdot {\left( {V + \frac{{V_{t} }} {3}} \right)} - \frac{{3P_{{out}} }} {{2V_{t} }}{\left( {V + V_{t} } \right)} $$
(A10)
$$ \underline{{\sigma {\left( {r_{{out}} } \right)} = \frac{{3P_{{in}} }} {{2V_{t} }} \cdot {\left( V \right)} - \frac{{3P_{{out}} }} {{2V_{t} }}{\left( {V + \raise0.5ex\hbox{$\scriptstyle 2$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 3$}V_{t} } \right)}_{{}} }} _{{\; + }} $$
(A11)
$$ \sigma {\left( {r_{{out}} } \right)} = \sigma {\left( {r_{{in}} } \right)} - \raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}P_{{in}} + \raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}P_{{out}} = \sigma {\left( {r_{{in}} } \right)} - \raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}P $$
(A12)

Mean stress in bladder wall:

$$ \sigma = {\left[ {\sigma {\left( {r_{{out}} } \right)} + \sigma {\left( {r_{{in}} } \right)}} \right]}/2 $$
(A13)

from (A.12) and (A.13):

$$ \begin{array}{*{20}l} {\sigma \hfill} & { = \hfill} & {{\sigma {\left( {r_{{in}} } \right)} - \raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 4$}P} \hfill} \\ {{} \hfill} & { = \hfill} & {{\frac{3} {{2V_{t} }}{\left( {P_{{in}} - P_{{out}} } \right)}V + \frac{1} {2}P_{{in}} - \frac{3} {2}P_{{out}} - \frac{1} {4}P} \hfill} \\ \end{array} $$
(A14)
$$ \begin{array}{*{20}c} {{}} & { = } & {{\frac{3} {{2V_{t} }} \cdot PV + \frac{1} {4}P - p_{{out}} }} \\ \end{array} $$
(A15)

Where P=Pin−Pout, and Pout is considered a constant. The term 1/4P becomes negligible if (3PV/2Vt)/0.25P>10, i.e. if 6 V/Vt>10.

In rats Vt averages 0.2 cm3. Thus, the pressure term is negligible if V>0.33 cm3 and should be accounted for only at low bladder volumes.

If nerve activity is proportional to stress then:

$$ \begin{array}{*{20}c} {{{\text{NA}} = a \cdot {\text{stress}} + b = a{\left( {3V/2V_{t} + \raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 4$}} \right)} \cdot P - {\left[ {a \cdot P_{{out}} + b} \right]} = a{\left( {3V/2V_{t} - \raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 4$}} \right)} \cdot P + {b}\ifmmode{'}\else$'$\fi}} \\ {{{\text{with }}{b}\ifmmode{'}\else$'$\fi = - a \cdot P_{{out}} - b}} \\ \end{array} $$
(A16)

Or under the above assumption:

$$ \begin{array}{*{20}c} {{NA = a{\left( {3/2V_{t} } \right)} \cdot PV + {b}\ifmmode{'}\else$'$\fi = {a}\ifmmode{'}\else$'$\fi \cdot PV + b}} \\ {{{\text{with }}{a}\ifmmode{'}\else$'$\fi = a{\left( {3/2V_{t} } \right)}}} \\ \end{array} $$
(A17)

Rights and permissions

Reprints and permissions

About this article

Cite this article

le Feber, J., van Asselt, E. & van Mastrigt, R. Afferent bladder nerve activity in the rat: a mechanism for starting and stopping voiding contractions. Urol Res 32, 395–405 (2004). https://doi.org/10.1007/s00240-004-0416-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-004-0416-8

Keywords

Navigation