Skip to main content
Log in

Prebiotic Phosphate Ester Syntheses in a Deep Eutectic Solvent

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

We report a route to synthesize a wide range of organophosphates of biological significance in a deep eutectic solvent (2:1 urea and choline chloride), utilizing various orthophosphate sources. Heating an organic alcohol in the solvent along with a soluble phosphorus source yields phosphorus esters of choline as well as that of the added organic in yields between 15 to 99 %. In addition, phosphite analogs of biological phosphates and peptides were also formed by the simple mixing of reagents and heating at 60–70 °C in the deep eutectic solvent. The presented dehydration reactions are relevant to prebiotic and green chemistry in alternative solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3

Similar content being viewed by others

References

  • Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 1:70–71

    Article  Google Scholar 

  • Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126:9142–9147

    Article  CAS  PubMed  Google Scholar 

  • Abbott AP, Harris RC, Ryder KS, Agostino CD, Gladden LF, Mantle MD (2011) Glycerol eutectics as sustainable solvent systems. Green Chem 13:82–90

    Article  CAS  Google Scholar 

  • Arrhenius G, Sales B, Mojzsis S, Lee T (1997) Entropy and charge in molecular evolution–the case of phosphate. J Theor Biol 187:503–522

    Article  CAS  PubMed  Google Scholar 

  • Austin SM, Waddell TG (1999) Prebiotic synthesis of vitamin B6-type compounds. Orig Life Evol Biospheres 29:287–296

    Article  CAS  Google Scholar 

  • Bowler MW, Cliff MJ, Waltho JP, Blackburn GM (2010) Why did nature select phosphate for its dominant roles in biology? New J Chem 34:784–794

    Article  CAS  Google Scholar 

  • Bryant DE, Kee TP (2006) Direct evidence for the availability of reactive, water soluble phosphorus on the early earth. H-phosphinic acid from the Nantan meteorite. Chem Commun 22:2344–2346

    Article  Google Scholar 

  • Bryant DE, Marriott KER, Macgregor SA, Kilner C, Pasek MA, Kee TP (2010) On the prebiotic potential of reduced oxidation state phosphorus: the H-phosphinate-pyruvate system. Chem Commun 46:3726–3728

    Article  CAS  Google Scholar 

  • Cheng C, Fan C, Wan R, Tong C, Miao Z, Zhao Y (2002) Phosphorylation of adenosine with trimetaphosphate under simulated prebiotic conditions. Orig Life Evol Biospheres 32:219–224

    Article  CAS  Google Scholar 

  • Choi YH, Spronsen JV, Dai Y, Verberne M, Hollmann F, Arends IWCE, Witkamp G-J, Verpoorte R (2011) Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol 156:1701–1705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Epps DE, Nooner DW, Eichberg J, Sherwood E, Oro J (1979) Cyanamide mediated synthesis under plausible primitive earth conditions. VI. the synthesis of glycerol and glycerophosphates. J Mol Evol 14:235–241

    Article  CAS  PubMed  Google Scholar 

  • Gorrell IB, Wang L, Marks AJ, Bryant DE, Bouillot F, Goddard A, Heard DE, Kee TP (2006) On the origin of the Murchison meteorite phosphonates. Implications for pre-biotic chemistry. Chem Commun 15:1643–1645

    Article  Google Scholar 

  • Graaf RMD, Schwartz AW (2000) Reduction and activation of phosphate on the primitive earth. Orig Life Evol Biospheres 30:405–410

    Article  Google Scholar 

  • Gulick A (1955) Phosphorus as a factor in the origin of life. Am Sci 43:479–489

    CAS  Google Scholar 

  • Gull M, Pasek MA (2013) Is struvite a prebiotic mineral? Life 3:321–330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gull M, Ge T, Yingwu W, Chao H, Zhan S, Hongming Y, Shouhua F (2010) Resolving the enigma of prebiotic C–O–P bond formation: prebiotic hydrothermal synthesis of important biological phosphate esters. Heteroat Chem 21:161–167

    Google Scholar 

  • Gull M, Yu W, Yingwu W, Zhan S, Ge T, Shouhua F (2011) Mimicking the prebiotic acidic hydrothermal environment: one pot prebiotic hydrothermal synthesis of glucose phosphates. Heteroat Chem 22:186–191

    Article  Google Scholar 

  • Halmann M, Sanchez RA, Orgel LE (1969) Phosphorylation of d-ribose in aqueous solution. J Org Chem 34:3702–3703

    Article  CAS  Google Scholar 

  • Handschuh GJ, Orgel LE (1973) Struvite and prebiotic phosphorylation. Science 179:483–484

    Article  CAS  PubMed  Google Scholar 

  • Kolb V, Orgel LE (1996) Phosphorylation of glyceric acid in aqueous solution using trimetaphosphate. Orig Life Evol Biospheres 26:7–13

    Article  CAS  Google Scholar 

  • Krishnamurthy R, Guntha S, Eschenmoser A (2000) Regioselective a-phosphorylation of aldoses in aqueous solution. Angew Chem Int Ed 39:2281–2285

    Article  CAS  Google Scholar 

  • Mamajanov I, Engelhart AE, Bean HD, Hud NV (2010) DNA and RNA in anhydrous media: duplex, triplex, and G-quadruplex secondary structures in a deep eutectic solvent. Angew Chem Int Ed 49:6310–6314

    Article  CAS  Google Scholar 

  • Maugeri Z, Leitner W, de Domínguez MP (2013) Chymotrypsin-catalyzed peptide synthesis in deep eutectic solvents. Eur J Org Chem 2013:4223–4228

    Article  CAS  Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529

    Article  CAS  PubMed  Google Scholar 

  • Miller SL, Schlesinger G (1993) Prebiotic syntheses of vitamin coenzymes: I. cysteamine and 2-mercaptoethanesulfonic acid (coenzyme M). J Mol Evol 36:302–307

    CAS  PubMed  Google Scholar 

  • Osterberg R, Orgel LE, Lohrmann R (1973) Further studies of urea-catalyzed phosphorylation reactions. J Mol Evol 2:231–234

    Article  CAS  PubMed  Google Scholar 

  • Pasek MA (2008) Rethinking earth phosphorus geochemistry. Proc Natl Acad Sci USA 105:853–858

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pasek MA, Kee TP (2011) Origins of phosphorylated biomolecules. In: Egel R et al (eds) Origins of life: the primal self-organization. Springer, Heidelberg, pp 57–84

    Chapter  Google Scholar 

  • Pasek MA, Dworkin JP, Lauretta DS (2007) A radical pathway for organic phosphorylation during schreibersite corrosion with implications for the origin of life. Geochim Cosmochim Acta 71:1721–1736

    Article  CAS  Google Scholar 

  • Pasek MA, Kee TP, Bryant DE, Pavlov AA, Lunine JI (2008) Production of potentially prebiotic condensed phosphates by phosphorus redox chemistry. Angew Chem Int Ed 47:7918–7920

    Article  CAS  Google Scholar 

  • Pasek MA, Harnmeijer JP, Buick R, Gull M, Atlas Z (2013) Evidence for reactive reduced phosphorus species in the early Archean ocean. Proc Natl Acad Sci USA 110:10089–10094

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pitsch S, Eschenmoser A, Gedulin B, Hui S, Arrhenius G (1995) Mineral induced formation of sugar phosphates. Orig Life Evol Biospheres 25:297–334

    Article  CAS  Google Scholar 

  • Rabinowitz J, Chang S, Ponnamperuma C (1968) Phosphorylation by way of inorganic phosphate as a potential protobiotic process. Nature 218:442–444

    Article  CAS  PubMed  Google Scholar 

  • Schoffstall AM (1976) Prebiotic phosphorylation of nucleosides in formamide. Orig Life Evol Biospheres 7:399–412

    Article  CAS  Google Scholar 

  • Schwartz AW (1997) Prebiotic phosphorus chemistry reconsidered. Orig Life Evol Biospheres 27:505–512

    Article  CAS  Google Scholar 

  • Schwartz AW (2006) Phosphorus in prebiotic chemistry. Phil Trans R Soc B 361:1743–1749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh B, Lobo H, Shankarling G (2011) Selective N-alkylation of aromatic primary amines catalysed by bio-catalyst or deep eutectic solvent. Catal Lett 141:178–182

    Article  CAS  Google Scholar 

  • Todd A (1959) Some aspects of phosphate chemistry. Proc Natl Acad Sci USA 45:1389–1397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Westheimer FH (1987) Why nature chose phosphates. Science 235:1173–1178

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by NSF and the NASA Astrobiology Program, under the NSF Center for Chemical Evolution, CHE-1004570 (MG, MZ, FF), and by the NASA Exobiology and Evolutionary Biology Program, NNX10AT30G (MAP). We thank Edwin Rivera from the USF NMR facility for research assistance. The authors thank Nicholas V. Hud, Ram Krishnamurthy, and Terry Kee for useful discussions. Maheen Gull also thanks Virginia Pasek and Danny Lindsay for their support and to her mother and sisters for their love and patience as well as her beloved father who passed away while the research work of this manuscript was going on.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew A. Pasek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 745 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gull, M., Zhou, M., Fernández, F.M. et al. Prebiotic Phosphate Ester Syntheses in a Deep Eutectic Solvent. J Mol Evol 78, 109–117 (2014). https://doi.org/10.1007/s00239-013-9605-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-013-9605-9

Keywords

Navigation