Skip to main content
Log in

Evolution of Cyclic Amidohydrolases: A Highly Diversified Superfamily

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Dihydroorotases are universal proteins catalyzing the third step of pyrimidine biosynthesis. These zinc metalloenzymes belong to the superfamily of cyclic amidohydrolases, comprising also other enzymes that are involved in degradation of either purines (allantoinases), pyrimidines (dihydropyrimidinases) or hydantoins (hydantoinases). The evolutionary relationships between these mechanistically related enzymes were estimated after designing a method to build an accurate multiple sequence alignment. The amino acid sequences that have been crystallized were used to build a seed alignment. All the remaining homologues were progressively added by aligning their HMM profiles to the seed HMM profile, allowing to obtain a reliable phylogeny of the superfamily. This helped us to propose a new evolutionary classification of dihydroorotases into three major types, while at the same time disentangling an important part of the history of their complex structure–function relationships. Although differing in their substrate specificity, allantoinases, hydantoinases and dihydropyrimidinases are found to be phylogenetically closer to DHOase Type I than the proximity of the three DHOase types to each other. This suggests that the primordial cyclic amidohydrolase was a multifunctional, highly evolvable generalist, with high conformational diversity allowing for promiscuous activities. Then, successive gene duplications allowed resolving the primordial substrate ambiguity in various substrate specificities. The present-day superfamily of cyclic amidohydrolases is the result of the progressive divergence of these ancestral paralogous copies by descent with modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahuja A, Purcarea C, Ebert R, Sadecki S, Guy HI, Evans DR (2004) Aquifex aeolicus dihydroorotase: association with aspartate transcarbamoylase switches on catalytic activity. J Biol Chem 279:53136–53144

    Article  CAS  PubMed  Google Scholar 

  • Aleksenko A, Liu W, Gojkovic Z, Nielsen J, Piskur J (1999) Structural and transcriptional analysis of the pyrABCN, pyrD and pyrF genes in Aspergillus nidulans and the evolutionary origin of fungal dihydroorotases. Mol Microbiol 33:599–611

    Article  CAS  PubMed  Google Scholar 

  • Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55:539–552

    Article  PubMed  Google Scholar 

  • Armougom F, Moretti S, Poirot O, Audic S, Dumas P, Schaeli B, Keduas V, Notredame C (2006) Expresso: automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee. Nucleic Acids Res 34:W604–W608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bergh ST, Evans DR (1993) Subunit structure of a class A aspartate transcarbamoylase from Pseudomonas fluorescens. Proc Natl Acad Sci USA 90:9818–9822

    Google Scholar 

  • Brichta D. (2003) Construction of a Pseudomonas aeruginosa dihydroorotase mutant and the discovery of a novel link between pyrimidine biosynthetic intermediates and the ability to produce virulence factors. Ph. D. Dissertation, Univ. of North Texas. http://digital.library.unt.edu/ark:/67531/metadc4344/

  • Brichta DM, Azad KN, Ralli P, O’Donovan GA (2004) Pseudomonas aeruginosa dihydroorotases: a tale of three pyrCs. Arch Microbiol 182:7–17

    Article  CAS  PubMed  Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (2002) The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52:297–354

    Article  CAS  PubMed  Google Scholar 

  • Christopherson RI, Jones ME (1979) Interconversion of carbamoyl-l-aspartate and l-dihydroorotate by dihydroorotase from mouse Ehrlich ascites carcinoma. J Biol Chem 254:12506–12512

    CAS  PubMed  Google Scholar 

  • Dalton JAR, Jackson RM (2007) An evaluation of automated homology modelling methods at low target template sequence similarity. Bioinformatics 23:1901–1908

    Article  CAS  PubMed  Google Scholar 

  • Dutta S, Burkhardt K, Young J, Swaminathan GJ, Matsuura T, Henrick K, Nakamura H, Berman HM (2009) Data deposition and annotation at the worldwide protein data bank. Mol Biotechnol 42:1–13

    Article  CAS  PubMed  Google Scholar 

  • Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Evans DR, Guy HI (2004) Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway. J Biol Chem 279:33035–33038

    Article  CAS  PubMed  Google Scholar 

  • Fields C, Brichta D, Shepherdson M, Farinha M, O’Donovan G. (1999) Phylogenetic analysis and classification of dihydroorotases: a complex history for a complex enzyme. Paths to pyrimidines—An international newsletter.7:49-63

  • Furnham N, Garavelli JS, Apweiler R, Thornton JM (2009) Missing in action: enzyme functional annotations in biological databases. Nat Chem Biol 5:521–525

    Article  CAS  PubMed  Google Scholar 

  • Glansdorff N, Xu Y, Labedan B (2008) The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol Direct 3:29

    Article  PubMed Central  PubMed  Google Scholar 

  • Glansdorff N, Xu Y, Labedan B (2009) The origin of life and the last universal common ancestor: do we need a change of perspective? Res Microbiol 160:522–528

    Article  CAS  PubMed  Google Scholar 

  • Glasner ME, Gerlt JA, Babbitt PC (2006) Evolution of enzyme superfamilies. Curr Opin Chem Biol 10:492–497

    Article  CAS  PubMed  Google Scholar 

  • Gojkovic Z, Rislund L, Andersen B, Sandrini MP, Cook PF, Schnackerz KD, Piskur J (2003) Dihydropyrimidine amidohydrolases and dihydroorotases share the same origin and several enzymatic properties. Nucleic Acids Res 31:1683–1692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goshima Y, Nakamura F, Strittmatter P, Strittmatter SM (1995) Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature 376:509–514

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Holm L, Sander C (1997) An evolutionary treasure: unification of a broad set of amidohydrolases related to urease. Proteins 28:72–82

    Article  CAS  PubMed  Google Scholar 

  • Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R (2007) Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinformatics 8:460

    Article  PubMed Central  PubMed  Google Scholar 

  • James LC, Tawfik DS (2003) Conformational diversity and protein evolution–a 60-year-old hypothesis revisited. Trends Biochem Sci 28:361–368

    Article  CAS  PubMed  Google Scholar 

  • Kim GJ, Kim HS (1998) Identification of the structural similarity in the functionally related amidohydrolases acting on the cyclic amide ring. Biochemistry 330:295–302

    Article  CAS  Google Scholar 

  • Kim GJ, Lee DE, Kim HS (2000) Functional expression and characterization of the two cyclic amidohydrolase enzymes, allantoinase and a novel phenylhydantoinase, from Escherichia coli. J Bacteriol 182:7021–7028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320

    Article  CAS  PubMed  Google Scholar 

  • Le SQ, Lartillot N, Gascuel O (2008) Phylogenetic mixture models for proteins. Philos Trans R Soc Lond B Biol Sci 363:3965–3976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  CAS  PubMed  Google Scholar 

  • Liu A, Li T, Fu R (2001) Amidohydrolase Superfamily. eLS. Wiley, Chichester

    Google Scholar 

  • Lohkamp B, Andersen B, Piskur J, Dobritzsch D (2006) The crystal structures of dihydropyrimidinases reaffirm the close relationship between cyclic amidohydrolases and explain their substrate specificity. J Biol Chem 281:13762–13776

    Article  CAS  PubMed  Google Scholar 

  • Löytynoja A, Goldman N (2008) Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science 320:1632–1635

    Article  PubMed  Google Scholar 

  • Martinez-Rodriguez S, Martinez-Gomez AI, Clemente-Jimenez JM, Rodriguez-Vico F, Garcia-Ruiz JM, Las Heras-Vazquez FJ, Gavira JA (2010) Structure of dihydropyrimidinase from Sinorhizobium meliloti CECT4114: new features in an amidohydrolase family member. J Struct Biol 169:200–208

    Article  CAS  PubMed  Google Scholar 

  • May O, Habenicht A, Mattes R, Syldatk C, Siemann M (1998) Molecular evolution of hydantoinases. Biol Chem 379:743–747

    CAS  PubMed  Google Scholar 

  • Nagano N, Orengo CA, Thornton JM (2002) One fold with many functions: the evolutionary relationships between TIM barrel families based on their sequences, structures and functions. J Mol Biol 321:741–765

    Article  CAS  PubMed  Google Scholar 

  • Nam SH, Park HS, Kim HS (2005) Evolutionary relationship and application of a superfamily of cyclic amidohydrolase enzymes. Chem Rec 5:298–307

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan O, Suhre K, Abergel C, Higgins DG, Notredame C (2004) 3DCoffee: combining protein sequences and structures within multiple sequence alignments. J Mol Biol 340:385–395

    Article  PubMed  Google Scholar 

  • Park JH, Kim GJ, Lee SG, Lee DC, Kim HS (1999) Purification and characterization of thermostable d-hydantoinase from Bacillus thermocatenulatus GH-2. Appl Biochem Biotechnol 81:53–65

    Article  CAS  PubMed  Google Scholar 

  • Piskur J, Schnackerz KD, Andersen G, Björnberg O (2007) Comparative genomics reveals novel biochemical pathways. Trends Genet 23:369–372

    Article  CAS  PubMed  Google Scholar 

  • Poirot O, Suhre K, Abergel C, O’Toole E, Notredame C (2004) 3DCoffee@igs: a web server for combining sequences and structures into a multiple sequence alignment. Nucleic Acids Res 32:W37–W40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490

    Article  PubMed Central  PubMed  Google Scholar 

  • Runser SM, Meyer PC (1993) Purification and biochemical characterization of the hydantoin hydrolyzing enzyme from Agrobacterium species: a hydantoinase with no 5,6-dihydropyrimidine amidohydrolase activity. Eur J Biochem 213:1315–1324

    Article  CAS  PubMed  Google Scholar 

  • Schnackerz KD, Dobritzsch D (2008) Amidohydrolases of the reductive pyrimidine catabolic pathway purification, characterization, structure, reaction mechanisms and enzyme deficiency. Biochim Biophys Acta 1784:431–444

    Article  CAS  PubMed  Google Scholar 

  • Schnoes AM, Brown SD, Dodevski I, Babbitt PC (2009) Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLoS Comput Biol 5:e1000605

    Article  PubMed Central  PubMed  Google Scholar 

  • Seibert CM, Raushel FM (2005) Structural and catalytic diversity within the amidohydrolase superfamily. Biochemistry 44:6383–6391

    Article  CAS  PubMed  Google Scholar 

  • Serre V, Guy H, Liu X, Penverne B, Hervé G, Evans D (1998) Allosteric regulation and substrate channeling in multifunctional pyrimidine biosynthetic complexes: analysis of isolated domains and yeast-mammalian chimeric proteins. J Mol Biol 281:363–377

    Article  CAS  PubMed  Google Scholar 

  • Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116

    Article  CAS  Google Scholar 

  • Shoaf WT, Jones ME (1973) Uridylic acid synthesis in Ehrlich ascites carcinoma. Properties, subcellular distribution, and nature of enzyme complexes of the six biosynthetic enzymes. Biochemistry 12:4039–4051

    Article  CAS  PubMed  Google Scholar 

  • Söding J (2005) Protein homology detection by HMM–HMM comparison. Bioinformatics 21:951–960

    Article  PubMed  Google Scholar 

  • Souciet JL, Nagy M, Le Gouar M, Lacroute F, Potier S (1989) Organization of the yeast URA2 gene: identification of a defective dihydroorotase-like domain in the multifunctional carbamoylphosphate synthetase-aspartate transcarbamylase complex. Gene 79:59–70

    Article  CAS  PubMed  Google Scholar 

  • Syldatk C, May O, Altenbuchner J, Mattes R, Siemann M (1999) Microbial hydantoinases—industrial enzymes from the origin of life? Appl Microbiol Biotechnol 51:293–309

    Article  CAS  PubMed  Google Scholar 

  • Taillades J, Beuzelin I, Garrel L, Tabacik V, Bied C, Commeyras A (1998) N-carbamoyl-α-amino acids rather than free α-amino acids formation in the primitive hydrosphere: a novel proposal for the emergence of prebiotic peptides. Orig Life Evol Biosph 28:61–77

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • The UniProt Consortium (2011) Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res 39:D214–D219

    Article  PubMed Central  Google Scholar 

  • Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699

    Article  CAS  PubMed  Google Scholar 

  • Wierenga RK (2001) The TIM-barrel fold: a versatile framework for efficient enzymes. FEBS Lett 492:193–198

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Martin PD, Purcarea C, Vaishnav A, Brunzelle JS, Fernando R, Guy-Evans HI, Evans DR, Edwards BFP (2009) Dihydroorotase from the hyperthermophile Aquifex aeolicus is activated by stoichiometric association with aspartate transcarbamoylase and forms a one-pot reactor for pyrimidine biosynthesis. Biochemistry 48:766–778

    Article  CAS  PubMed  Google Scholar 

  • Zrenner R, Stitt M, Sonnewald U, Boldt R (2006) Pyrimidine and purine biosynthesis and degradation in plants. Annu Rev Plant Biol 57:805–836

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very indebted to Barry Holland for his invaluable help in critically reading our manuscript and improving the English. The constructive comments of the two reviewers and of the associate editor were very helpful to improve our manuscript at the revision stage. This work, funded by the CNRS (UMR 8621), forms part of the PhD thesis of Matthieu Barba who was supported by a doctoral grant from the French Ministère de la Recherche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Labedan.

Additional information

Nicolas Glansdorff—Deceased in July 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barba, M., Glansdorff, N. & Labedan, B. Evolution of Cyclic Amidohydrolases: A Highly Diversified Superfamily. J Mol Evol 77, 70–80 (2013). https://doi.org/10.1007/s00239-013-9580-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-013-9580-1

Keywords

Navigation