Skip to main content
Log in

Compositional Bias is a Major Determinant of the Distribution Pattern and Abundance of Palindromes in Drosophila melanogaster

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Palindromic sequences are important DNA motifs related to gene regulation, DNA replication and recombination, and thus, investigating the evolutionary forces shaping the distribution pattern and abundance of palindromes in the genome is substantially important. In this article, we analyzed the abundance of palindromes in the genome, and then explored the possible effects of several genomic factors on the palindrome distribution and abundance in Drosophila melanogaster. Our results show that the palindrome abundance in D. melanogaster deviates from random expectation and the uneven distribution of palindromes across the genome is associated with local GC content, recombination rate, and coding exon density. Our data suggest that base composition is the major determinant of the distribution pattern and abundance of palindromes and the correlation between palindrome density and recombination is a side-product of the effect of compositional bias on the palindrome abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arndt PF, Burge CB, Hwa T (2003) DNA sequence evolution with neighbor-dependent mutation. J Comput Biol 10:313–322

    Article  PubMed  CAS  Google Scholar 

  • Bartolome C, Maside X, Charlesworth B (2002) On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. Mol Biol Evol 19:926–937

    Article  PubMed  CAS  Google Scholar 

  • Birdsell JA (2002) Integrating genomics, bioinformatics, and classical genetics to study the effects of recombination on genome evolution. Mol Biol Evol 19:1181–1197

    Article  PubMed  CAS  Google Scholar 

  • Chu W, Ballard R, Schmind C (1997) Palindromic sequence preceding the terminator increase polymerase III template activity. Nucl Acids Res 25:2077–2082

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1974) The evolutionary advantage of recombination. Genetics 78:737–756

    PubMed  CAS  Google Scholar 

  • Galtier N, Piganeau G, Mouchiroud D, Duret L (2001) GC-content evolution in mammalian genomes: the biased gene conversion hypothesis. Genetics 159:907–911

    PubMed  CAS  Google Scholar 

  • Gelfand MS, Koonin EV (1997) Avoidance of palindromic words in bacterial and archaeal genomes: a close connection with restriction enzymes. Nucl Acids Res 25:2430–2439

    Article  PubMed  CAS  Google Scholar 

  • Hiratsu K, Mochizuki S, Kinashi H (2000) Cloning and analysis of the replication origin and the telomeres of the large linear plasmid pSLA2-L in Streptomyces rochei. Mol Gen Genet 263:1015–1021

    Article  PubMed  CAS  Google Scholar 

  • Hua-Van A, Rouzic AL, Maisonhaute C, Capy P (2005) Abundance, distribution and dynamics of retrotransposable elements and transposons: similarities and differences. Cytogenet Genome Res 110:426–440

    Article  PubMed  CAS  Google Scholar 

  • Hughes JF, Skaletsky H, Pyntikova T, Graves TA, van Daalen SK, Minx PJ, Fulton RS, McGrath SD, Locke DP, Friedman C, Trask BJ, Mardis ER, Warren WC, Repping S, Rozen S, Wilson RK, Page DC (2010) Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content. Nature 463:536–539

    Article  PubMed  CAS  Google Scholar 

  • Karlin S, Mrazek J, Campbell AM (1997) Compositional biases of bacterial genomes and evolutionary implications. J Bacteriol 179:1363–1370

    Google Scholar 

  • Kliman RM, Hey J (1993) Reduced natural selection associated with low recombination in Drosophila melanogaster. Mol Biol Evol 10:1239–1258

    PubMed  CAS  Google Scholar 

  • Langley CH, Lazzaro BP, Phillips W, Heikkinen E, Braverman JM (2000) Linkage disequilibria and the site frequency spectra in the su(s) and su(wa) regions of the Drosophila melanogaster X chromosome. Genetics 156:1837–1852

    PubMed  CAS  Google Scholar 

  • Leach DR (1994) Long DNA palindromes, cruciform structures, genetic instability and secondary structure repair. BioEssays 16:893–900

    Article  PubMed  CAS  Google Scholar 

  • LeBlanc MD, Aspeslagh G, Buggia NP, Dyer BD (2000) An annotated catalog of inverted repeats of Caenorhabditis elegans chromosomes III and X, with observations concerning odd/even biases and conserved motifs. Genome Res 10:1381–1392

    Article  PubMed  CAS  Google Scholar 

  • Lewin B (2004) Genes VIII. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Lisnić B, Svetec IK, Sarić H, Nikolić I, Zgaga Z (2005) Palindrome content of the yeast Saccharomyces cerevisiae genome. Curr Genet 47:289–297

    Article  PubMed  Google Scholar 

  • Lisnić B, Svetec IK, Stafa A, Zgaga Z (2009) Size-dependent palindrome-induced intrachromosomal recombination in yeast. DNA Repair 8:383–389

    Article  PubMed  Google Scholar 

  • Liu G, Li H (2008) The correlation between recombination rate and dinucleotide bias in Drosophila melanogaster. J Mol Evol 67:358–367

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Li H, Cai L (2010) Processed pseudogenes are located preferentially in regions of low recombination rates in the human genome. J Evol Biol 23:1107–1115

    Article  PubMed  CAS  Google Scholar 

  • Lobachev KS, Shor BM, Tran HT, Taylor W, Keen JD, Resnick MA, Gordenin DA (1998) Factors affecting inverted repeat stimulation of recombination and deletion in Saccharomyces cerevisiae. Genetics 148:1507–1524

    PubMed  CAS  Google Scholar 

  • Lu L, Jia H, Droge P, Li J (2007) The human genome-wide distribution of DNA palindromes. Funct Integr Genomics 7:221–227

    Article  PubMed  CAS  Google Scholar 

  • Marais G, Mouchiroud D, Duret L (2003) Neutral effect of recombination on base composition in Drosophila. Genet Res 81:79–87

    Article  PubMed  CAS  Google Scholar 

  • McClarin JA, Frederick CA, Wang BC, Greene P, Boyer HW, Grable J, Rosenberg JM (1986) Structure of the DNA-EcoRI endonucleases recognition complex at 3 Å resolution. Science 234:1526–1541

    Article  PubMed  CAS  Google Scholar 

  • Méndez-Lago M, Bergman CM, de Pablos B, Tracey A, Whitehead SL, Villasante A (2011) A large palindrome with interchromosomal gene duplications in the pericentromeric region of the D. melanogaster Y chromosome. Mol Biol Evol 28:1967–1971

    Article  PubMed  Google Scholar 

  • Meunier J, Duret L (2004) Recombination drives the evolution of GC-content in the human genome. Mol Biol Evol 21:984–990

    Article  PubMed  CAS  Google Scholar 

  • Nag DK, Kurst A (1997) A 140-bp-long palindromic sequence induces double-strand breaks during meiosis in the yeast Saccharomyces cerevisiae. Genetics 146:835–847

    PubMed  CAS  Google Scholar 

  • Nasar F, Jankowski C, Nag DK (2000) Long palindromic sequences induce double-strand breaks during meiosis in yeast. Mol Cell Biol 20:3449–3458

    Article  PubMed  CAS  Google Scholar 

  • Rocha EPC, Danchin A, Viari A (2001) Evolutionary role of restriction/modification systems as revealed by comparative genome analysis. Genome Res 11:946–958

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H, Marszalek JD, Minx PJ, Cordum HS, Waterston RH, Wilson RK, Page DC (2003) Abundant gene conversion between arms of palindromes in human and ape Y chromosomes. Nature 423:873–876

    Article  PubMed  CAS  Google Scholar 

  • Singh ND, Davis JC, Petrov DA (2005) Codon bias and non-coding GC content correlate negatively with recombination rate on the Drosophila X chromosome. J Mol Evol 61:315–324

    Article  PubMed  CAS  Google Scholar 

  • Thukral SK, Eisen A, Young ET (1991) Two monomers of yeast transcription factor ADR1 bind a palindromic sequence symmetrically to activate ADH2 expression. Mol Cell Biol 11:1566–1577

    PubMed  CAS  Google Scholar 

  • Toth G, Gaspari Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10:967–981

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Guo S, Ren M (2002) Analysis the influence of palindrome structure to gene expression by constructing combination system. Acta Microbiologica Sinica 42:186–192 (in Chinese)

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Xiu-Juan Zhao for her helpful discussions. This work was supported by grants from the National Natural Science Foundation (61102162), the Research Program of Higher Education of Inner Mongolia Autonomous Region (NJ10098) and the Innovation Fund of Inner Mongolia University of Science and Technology (2009NC005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqing Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

239_2012_9527_MOESM1_ESM.doc

Supplementary Fig. 1 Comparison of palindrome abundance in the repeat-masked genome of D. melanogaster and random sequences. The size of palindromes is illustrated in the parentheses behind the title of ordinate. The ordinate represents the average of palindrome densities for both the non-overlapping 100-kb fragments of the repeat-masked D. melanogaster genome and the corresponding composition-constrained random sequences (see Methods for detail). Analysis of variance shows that the palindrome densities for natural sequences and random sequences are significantly different (1 × 10−31 < P < 0.008). (DOC 591 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Liu, J. & Zhang, B. Compositional Bias is a Major Determinant of the Distribution Pattern and Abundance of Palindromes in Drosophila melanogaster . J Mol Evol 75, 130–140 (2012). https://doi.org/10.1007/s00239-012-9527-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-012-9527-y

Keywords

Navigation