Skip to main content
Log in

The human genome-wide distribution of DNA palindromes

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

In this work, we performed a systematic study of perfect and nonspacer palindromes present in human genomic DNA, and we investigated palindrome distribution over the entire human genome and over the functional regions such as the exon, intron, intergenic, and upstream regions (2,000 bp upstream from translational start site). We found that 24 palindrome-abundant intervals are mostly located on G-bands, which condense early, replicate late, and are relatively A+T rich. In general, palindromes are overrepresented in introns but underrepresented in exons. Upstream region has enriched palindrome distribution, where palindromes can serve as transcription factor binding sites. We created a Human DNA Palindrome Database (HPALDB) which is accessible at http://vhp.ntu.edu.sg/hpaldb. It contains 12,556,994 entries covering all palindromes in the human genome longer than 6 bp. Queries can be performed in different ways. Each entry in the database is linked to its location on NCBI’s human chromosome Map Viewer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bendall AJ, Molloy PL (1994) Base preferences for DNA binding by the bHLH-Zip protein USF: effects of MgCl2 on specificity and comparison with binding of Myc family members. Nucleic Acids Res 22:2801–2810

    Article  PubMed  CAS  Google Scholar 

  • Boyd KE, Farnham PJ (1999) Coexamination of site-specific transcription factor binding and promoter activity in living cells. Mol Cell Biol 19:8393–8399

    PubMed  CAS  Google Scholar 

  • Bzymek M, Lovett ST (2001) Evidence for two mechanisms of palindrome-stimulated deletion in Escherichia coli: single-strand annealing and replication slipped mispairing. Genetics 158:527–540

    PubMed  CAS  Google Scholar 

  • Chew DSH, Choi KP, Leung M-Y (2005) Scoring schemes of palindrome clusters for more sensitive prediction of replication origins in herpesviruses. Nucleic Acids Res 33:e134

    Article  PubMed  Google Scholar 

  • Coffin JM, Hughes SH, Varmus HE (1997) Retroviral sequences. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Cunningham LA, Cote AG, Cam-Ozdemir C, Lewis SM (2003) Rapid, stabilizing palindrome rearrangements in somatic cells by the center-break mechanism. Mol Cell Biol 23:8740–8750

    Article  PubMed  CAS  Google Scholar 

  • Dröge P (1994) Protein tracking-induced supercoiling of DNA: a tool to regulate DNA transactions in vivo? Bioessays 16:91–99

    Article  PubMed  Google Scholar 

  • Dröge P, Müller-Hill B (2001) High local protein concentrations at promoters: strategies in prokaryotic and eukaryotic cells. Bioessays 23:179–183

    Article  PubMed  Google Scholar 

  • Durbin R, Eddy S, Krogh A (1998) Biological sequences analysis: probabilistic models of proteins and nucleic acids. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • FitzGerald PC, Shlyakhtenko A, Mir AA, Vinson C (2004) Clustering of DNA sequences in human promoters. Genome Res 14:1562–1574

    Article  PubMed  CAS  Google Scholar 

  • Gotter AL, Shaikh TH, Budarf ML, Rhodes CH, Emanuel BS (2004) A palindrome-mediated mechanism distinguishes translocations involving LCR-B of chromosome 22q11.2. Hum Mol Genet 13:103–115

    Article  PubMed  CAS  Google Scholar 

  • Henthorn PS, Mager DL, Huisman THJ, Smithies O (1986) A gene deletion ending within a complex array of repeated sequences 3′ to the human {beta}-globin gene cluster. Proc Natl Acad Sci USA 83:5194–5198

    Article  PubMed  CAS  Google Scholar 

  • Kornberg A, Baker TA (1992) DNA replication. Freeman, New York

    Google Scholar 

  • Leach DRF (1996) Cloning and characterization of DNAs with palindromic sequences. Genet Eng (N Y) 18:1–11

    CAS  Google Scholar 

  • LeBlanc MD, Aspeslagh G, Buggia NP, Dyer BD (2000) An annotated catalog of inverted repeats of Caenorhabditis elegans chromosomes III and X, with observations concerning odd/even biases and conserved motifs. Genome Res 10:1381–1392

    Article  PubMed  CAS  Google Scholar 

  • Lewis SM, Cote AG (2006) Palindromes and genomic stress fractures: bracing and repairing the damage. DNA Repair 5:1146–1160

    Article  PubMed  CAS  Google Scholar 

  • Lewis SM, Chen S, Strathern JN, Rattray AJ (2005) New approaches to the analysis of palindromic sequences from the human genome: evolution and polymorphism of an intronic site at the NF1 locus. Nucleic Acids Res 33:e186

    Article  PubMed  Google Scholar 

  • Lisnic B, Svetec I-K, Saric H, Nikolic I, Zgaga Z (2005) Palindrome content of the yeast Saccharomyces cerevisiae genome. Curr Genet 47(5):289–297

    Article  PubMed  CAS  Google Scholar 

  • Mattick JS (2004) RNA regulation: a new genetics? Nat Rev Genet 5:316–323

    Article  PubMed  CAS  Google Scholar 

  • Mayr B, Montminy M (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2:599–609

    Article  PubMed  CAS  Google Scholar 

  • Scarpulla RC (2002) Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 286:81–89

    Article  PubMed  CAS  Google Scholar 

  • Shaywitz AJ, Greenberg ME (1999) CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 68:821–861

    Article  PubMed  CAS  Google Scholar 

  • Shen WH, Wang J, Wu J, Zhurkin VB, Yin Y (2006) Mitogen-activated protein kinase phosphatase 2: a novel transcription target of p53 in apoptosis. Cancer Res 66:6033–6039

    Article  PubMed  CAS  Google Scholar 

  • Silver LM (1995) Mouse genetics. Oxford University Press, London, UK

    Google Scholar 

  • Tokuhisa JG, Singh K, Dennis ES, Peacock WJ (1990) A DNA-binding protein factor recognizes two binding domains within the octopine synthase enhancer element. Plant Cell 2:215–224

    Article  PubMed  CAS  Google Scholar 

  • Toth G, Gaspari Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10:967–981

    Article  PubMed  CAS  Google Scholar 

  • Warburton PE, Giordano J, Cheung F, Gelfand Y, Benson G (2004) Inverted repeat structure of the human genome: the X-chromosome contains a preponderance of large, highly homologous inverted repeats that contain testes genes. Genome Res 14:1861–1869

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of Nanyang Technological University, Singapore. We are particularly grateful to the two anonymous reviewers for their constructive comments and suggestions that significantly improved the presentation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinming Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, L., Jia, H., Dröge, P. et al. The human genome-wide distribution of DNA palindromes. Funct Integr Genomics 7, 221–227 (2007). https://doi.org/10.1007/s10142-007-0047-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-007-0047-6

Keywords

Navigation