Skip to main content
Log in

Metabolic and Translational Efficiency in Microbial Organisms

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Metabolic efficiency, as a selective force shaping proteomes, has been shown to exist in Escherichia coli and Bacillus subtilis and in a small number of organisms with photoautotrophic and thermophilic lifestyles. Earlier attempts at larger-scale analyses have utilized proxies (such as molecular weight) for biosynthetic cost, and did not consider lifestyle or auxotrophy. This study extends the analysis to all currently sequenced microbial organisms that are amenable to these analyses while utilizing lifestyle specific amino acid biosynthesis pathways (where possible) to determine protein production costs and compensating for auxotrophy. The tendency for highly expressed proteins (with adherence to codon usage bias as a proxy for expressivity) to utilize less biosynthetically expensive amino acids is taken as evidence of cost selection. A comprehensive analysis of sequenced genomes to identify those that exhibit strong translational efficiency bias (389 out of 1,700 sequenced organisms) is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akashi H, Gojobori T (2002) Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci USA 19:3695–3700

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Alves R, Savageau MA (2005) Evidence of selection for low cognate amino acid bias in amino acid biosynthetic enzymes. Mol Microbiol 56:1017–1034

    Article  PubMed  CAS  Google Scholar 

  • Barton MD, Delneri D, Oliver SG, Rattray M, Bergman CM (2010) Evolutionary systems biology of amino acid biosynthetic cost in yeast. PLoS ONE 5:e11935

    Article  PubMed  Google Scholar 

  • Bragg JG, Wagner A (2009) Protein material costs: single atoms can make an evolutionary difference. Trends Genet 25:5–8

    Article  PubMed  CAS  Google Scholar 

  • Carbone A, Zinovyev A, Kepes F (2003) Codon adaptation index as a measure of dominating codon bias. Bioinformatics 19:2005–2015

    Article  PubMed  CAS  Google Scholar 

  • Carbone A, Kepes F, Zinovyev A (2005) Codon bias signatures, organization of microorganisms in codon space, and lifestyle. Mol Biol Evol 22:547–561

    Article  PubMed  CAS  Google Scholar 

  • Chanda I, Pan A, Dutta C (2005) Proteome composition in Plasmodium falciparum: higher usage of GC-rich nonsynonymous codons in highly expressed genes. J Mol Evol 61:513–523

    Article  PubMed  CAS  Google Scholar 

  • Craig CL, Weber RS (1998) Selection costs of amino acid substitutions in ColE1 and ColIa gene clusters harbored by Escherichia coli. Int J Biol Macromol 24:109–118

    Article  Google Scholar 

  • Das S, Ghosh S, Pan A, Dutta C (2005) Compositional variation in bacterial genes and proteins with potential expression level. FEBS Lett 579:5205–5210

    Article  PubMed  CAS  Google Scholar 

  • dos Reis M, Wernisch L, Savva R (2003) Unexpected correlations between gene expression and codon usage bias from microarray data for the whole Escherichia coli K-12 genome. Nucleic Acids Res 31:6976–6985

    Article  PubMed  Google Scholar 

  • Eyre-Walker A (1996) Synonymous codon bias is related to gene length in Escherichia coli: selection for translational accuracy? Mol Biol Evol 13:864–872

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP—phylogeny inference package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Felsenstein J (1993) PHYLIP (Phylogeny Inference Package) Distributed by the author:Seattle

  • Garat B, Musto H (2000) Trends of amino acid usage in the proteins from the unicellular parasite Giardia lamblia. Biochem Biophys Res Commun 279:996–1000

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Vallvé S, Guzman E, Montero MA, Romeu A (2003) HGT-DB: a database of putative horizontally transferred genes in prokaryotic complete genomes. Nucleic Acids Res 31:187–189

    Article  PubMed  Google Scholar 

  • Heizer EM Jr, Raiford DW III, Raymer ML, Doom TE, Miller RV, Krane DE (2006) Amino acid cost and codon-usage biases in 6 prokaryotic genomes: a whole-genome analysis. Mol Biol Evol 23:1670–1680

    Article  PubMed  CAS  Google Scholar 

  • Heizer EM Jr, Raymer ML, Krane DE (2011) Amino acid biosynthetic cost and protein conservation. J Mol Evol 72:466–473

    Article  PubMed  CAS  Google Scholar 

  • Hershberg R, Petrov DA (2009) General rules for optimal codon choice. PLoS Genet 5:e1000556

    Article  PubMed  Google Scholar 

  • Ikemura T (1981a) Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. J Mol Biol 146:1–21

    Article  PubMed  CAS  Google Scholar 

  • Ikemura T (1981b) Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J Mol Biol 151:389–409

    Article  PubMed  CAS  Google Scholar 

  • Jansen R, Gerstein M (2000) Analysis of the yeast transcriptome with structural and functional categories: characterizing highly expressed proteins. Nucleic Acids Res 28:1481–1488

    Article  PubMed  CAS  Google Scholar 

  • Kahali B, Basak S, Ghosh TC (2007) Reinvestigating the codon and amino acid usage of S. cerevisiae genome: a new insight from protein secondary structure analysis. Biochem Biophys Res Commun 354:693–699

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JG, Hendrickson H (2005) Genome evolution in bacteria: order beneath chaos. Curr Opin Microbiol 8:572–578

    Article  PubMed  CAS  Google Scholar 

  • Lobry JR, Gautier C (1994) Hydrophobicity, expressivity and aromaticity are the major trends of no-acid usage in 999 Escherichia coli chromosome-encoded genes. Nucleic Acids Res 22:3174–3180

    Article  PubMed  CAS  Google Scholar 

  • NCBI (2011) National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov/

  • Nei M (1975) Molecular population genetics and evolution. Front Biol 40:I-288

    PubMed  Google Scholar 

  • Palacios C, Wernegreen JJ (2002) A strong effect of AT mutational bias on amino acid usage in Buchnera is mitigated at high-expression genes. Mol Biol Evol 19:1575–1584

    Article  PubMed  CAS  Google Scholar 

  • Peixoto L, Fernandez V, Musto H (2004) The effect of expression levels on codon usage in Plasmodium falciparum. Parasitology 128:245–251

    Article  PubMed  CAS  Google Scholar 

  • Raiford DW, Heizer EM Jr, Miller RV, Akashi H, Raymer ML, Krane DE (2008) Do amino acid biosynthetic costs constrain protein evolution in Saccharomyces cerevisiae? J Mol Evol 67(6):621–630

    Article  PubMed  CAS  Google Scholar 

  • Raiford DW, Krane DE, Doom TE, Raymer ML (2010) Automated isolation of translational efficiency bias that resists the confounding effect of GC(AT)-content. IEEE/ACM Trans Comput Biol Bioinform 7:238–250

    Article  PubMed  CAS  Google Scholar 

  • Raiford DW, Krane DE, Doom TE, Raymer ML (2011) A genetic optimization approach for isolating translational efficiency bias. IEEE/ACM Trans Comput Biol Bioinform 8:342–352

    Article  PubMed  Google Scholar 

  • Schaber J, Rispe C, Wernegreen J, Buness A, Delmotte F, Silva FJ, Moya A (2005) Gene expression levels influence amino acid usage and evolutionary rates in endosymbiotic bacteria. Gene 352:109–117

    Article  PubMed  CAS  Google Scholar 

  • Seligmann H (2003) Cost-minimization of amino acid usage. J Mol Evol 56:151–161

    Article  PubMed  CAS  Google Scholar 

  • Sharp PM, Li WH (1987) The codon adaptation index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–1295

    Article  PubMed  CAS  Google Scholar 

  • Smith DR, Chapman MR (2010) Economical evolution: microbes reduce the synthetic cost of extracellular proteins. mBio 1(3): e00131

    Google Scholar 

  • Spearman C (1904) General intelligence objectively determined and measured. Am J Psychol 15:201–293

    Article  Google Scholar 

  • Supek F, Vlahovicek K (2005) Comparison of codon usage measures and their applicability in prediction of microbial gene expressivity. BMC Bioinform 6:182

    Article  Google Scholar 

  • Swire J (2007) Selection on synthesis cost affects interprotein amino acid usage in all three domains of life. J Mol Evol 64:558–571

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Urrutia AO, Hurst LD (2003) The signature of selection mediated by expression on human genes. Genome Res 13:2260–2264

    Article  PubMed  CAS  Google Scholar 

  • Wagner A (2005) Energy constraints on the evolution of gene expression. Mol Biol Evol 22:1365–1374

    Article  PubMed  CAS  Google Scholar 

  • Zavala A, Naya H, Romero H, Musto H (2002) Trends in codon and amino acid usage in Thermotoga maritima. J Mol Evol 54:563–568

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas W. Raiford.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raiford, D.W., Heizer, E.M., Miller, R.V. et al. Metabolic and Translational Efficiency in Microbial Organisms. J Mol Evol 74, 206–216 (2012). https://doi.org/10.1007/s00239-012-9500-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-012-9500-9

Keywords

Navigation