Skip to main content
Log in

Nuclear DYW-Type PPR Gene Families Diversify with Increasing RNA Editing Frequencies in Liverwort and Moss Mitochondria

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

RNA editing in mitochondria and chloroplasts of land plants alters transcript sequences by site-specific conversions of cytidines into uridines. RNA editing frequencies vary extremely between land plant clades, ranging from zero in some liverworts to more than 2,000 sites in lycophytes. Unique pentatricopeptide repeat (PPR) proteins with variable domain extension (E/E+/DYW) have recently been identified as specific editing site recognition factors in model plants. The distinctive functions of these PPR protein domain additions have remained unclear, although deaminase function has been proposed for the DYW domain. To shed light on diversity of RNA editing and DYW proteins at the origin of land plant evolution, we investigated editing patterns of the mitochondrial nad5, nad4, and nad2 genes in a wide sampling of more than 100 liverworts and mosses using the recently developed PREPACT program (www.prepact.de) and exemplarily confirmed predicted RNA editing sites in selected taxa. Extreme variability in RNA editing frequency is seen both in liverworts and mosses. Only few editings exist in the liverwort Lejeunea cavifolia or the moss Pogonatum urnigerum whereas up to 20% of cytidines are edited in the liverwort Haplomitrium mnioides or the moss Takakia lepidozioides. Interestingly, the latter are taxa that branch very early within their respective clades. Amplicons targeting the E/E+/DYW domains and subsequent random clone sequencing show DYW domains among bryophytes to be highly conserved in comparison with their angiosperm counterparts and to correlate well with RNA editing frequencies regarding their diversities. We propose that DYW proteins are the key players of RNA editing at the origin of land plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beckert S, Steinhauser S, Muhle H, Knoop V (1998) A molecular phylogeny of bryophytes on nucleotide sequences of the mitochondrial nad5 gene. Plant Syst Evol 218:179–192

    Article  Google Scholar 

  • Chateigner-Boutin AL, des Francs-Small CC, Delannoy E, Kahlau S, Tanz SK, de Longevialle AF, Fujii S, Small I (2011) OTP70 is a pentatricopeptide repeat protein of the E subgroup involved in splicing of the plastid transcript rpoC1. Plant J 65:532–542

    Article  PubMed  CAS  Google Scholar 

  • Covello PS, Gray MW (1989) RNA editing in plant mitochondria. Nature 341:662–666

    Article  PubMed  CAS  Google Scholar 

  • Covello PS, Gray MW (1993) On the evolution of RNA editing. Trends Genet 9:265–268

    Article  PubMed  CAS  Google Scholar 

  • Crandall-Stotler BJ, Forrest LL, Stotler RE (2005) Evolutionary trends in the simple thalloid liverworts (Marchantiophyta, Jungermanniopsida subclass Metzgeriidae). Taxon 54:299–316

    Article  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  PubMed  CAS  Google Scholar 

  • Davis CE (2004) A molecular phylogeny of leafy liverworts (Jungermanniidae: Marchantiophyta). In: Goffinet B, Hollowell V, Magill R (eds) Monographs in systematic botany. Missouri Botanical Garden Press, St Louis, pp 61–86

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation from plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Duff RJ (2006) Divergent RNA editing frequencies in hornwort mitochondrial nad5 sequences. Gene 366:285–291

    Article  PubMed  Google Scholar 

  • Freyer R, Kiefer-Meyer MC, Kossel H (1997) Occurrence of plastid RNA editing in all major lineages of land plants. Proc Natl Acad Sci USA 94:6285–6290

    Article  PubMed  CAS  Google Scholar 

  • Fujii S, Small I (2011) The evolution of RNA editing and pentatricopeptide repeat genes. New Phytol 191:37–47

    Article  PubMed  CAS  Google Scholar 

  • Giegé P, Brennicke A (1999) RNA editing in Arabidopsis mitochondria effects 441 C to U changes in ORFs. Proc Natl Acad Sci USA 96:15324–15329

    Article  PubMed  Google Scholar 

  • Grewe F, Herres S, Viehover P, Polsakiewicz M, Weisshaar B, Knoop V (2011) A unique transcriptome: 1782 positions of RNA editing alter 1406 codon identities in mitochondrial mRNAs of the lycophyte Isoetes engelmannii. Nucleic Acids Res 39:2890–2902

    Article  PubMed  CAS  Google Scholar 

  • Groth-Malonek M, Wahrmund U, Polsakiewicz M, Knoop V (2007) Evolution of a pseudogene: exclusive survival of a functional mitochondrial nad7 gene supports Haplomitrium as the earliest liverwort lineage and proposes a secondary loss of RNA editing in Marchantiidae. Mol Biol Evol 24:1068–1074

    Article  PubMed  CAS  Google Scholar 

  • Gualberto JM, Lamattina L, Bonnard G, Weil JH, Grienenberger JM (1989) RNA editing in wheat mitochondria results in the conservation of protein sequences. Nature 341:660–662

    Article  PubMed  CAS  Google Scholar 

  • Handa H (2003) The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucleic Acids Res 31:5907–5916

    Article  PubMed  CAS  Google Scholar 

  • Hecht J, Grewe F, Knoop V (2011) Extreme RNA editing in coding islands and abundant microsatellites in repeat sequences of Selaginella moellendorffii mitochondria: the root of frequent plant mtDNA recombination in early tracheophytes. Genome Biol Evol 3:344–358

    Article  PubMed  CAS  Google Scholar 

  • Hiesel R, Wissinger B, Schuster W, Brennicke A (1989) RNA editing in plant mitochondria. Science 246:1632–1634

    Article  PubMed  CAS  Google Scholar 

  • Hiesel R, Combettes B, Brennicke A (1994) Evidence for RNA editing in mitochondria of all major groups of land plants except the Bryophyta. Proc Natl Acad Sci USA 91:629–633

    Article  PubMed  CAS  Google Scholar 

  • Hoch B, Maier RM, Appel K, Igloi GL, Kossel H (1991) Editing of a chloroplast messenger-RNA by creation of an initiation codon. Nature 353:178–180

    Article  PubMed  CAS  Google Scholar 

  • Ichinose M, Tasaki E, Sugita C, Sugita M (2011) A PPR-DYW protein is required for splicing of a group II intron of cox1 pre-mRNA in Physcomitrella patens. Plant J. doi:10.1111/j.1365-313X.2011.04869.x

    PubMed  Google Scholar 

  • Inada M, Sasaki T, Yukawa M, Tsudzuki T, Sugiura M (2004) A systematic search for RNA editing sites in pea chloroplasts: an editing event causes diversification from the evolutionarily conserved amino acid sequence. Plant Cell Physiol 45:1615–1622

    Article  PubMed  CAS  Google Scholar 

  • Iyer LM, Zhang D, Rogozin IB, Aravind L (2011) Evolution of the deaminase fold and multiple origins of eukaryotic editing and mutagenic nucleic acid deaminases from bacterial toxin systems. Nucleic Acids Res 39:9473–9497

    Article  PubMed  CAS  Google Scholar 

  • Jobb G, von Haeseler A, Strimmer K (2004) TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:18

    Article  PubMed  Google Scholar 

  • Jobson RW, Qiu YL (2008) Did RNA editing in plant organellar genomes originate under natural selection or through genetic drift? Biol Direct 3:43

    Article  PubMed  Google Scholar 

  • Kim SR, Yang JI, Moon S, Ryu CH, An K, Kim KM, Yim J, An G (2009) Rice OGR1 encodes a pentatricopeptide repeat-DYW protein and is essential for RNA editing in mitochondria. Plant J 59:738–749

    Article  PubMed  CAS  Google Scholar 

  • Knoop V, Rüdinger M (2010) DYW-type PPR proteins in a heterolobosean protist: plant RNA editing factors involved in an ancient horizontal gene transfer? FEBS Lett 584:4287–4291

    Article  PubMed  CAS  Google Scholar 

  • Kotera E, Tasaka M, Shikanai T (2005) A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts. Nature 433:326–330

    Article  PubMed  CAS  Google Scholar 

  • Kugita M, Yamamoto Y, Fujikawa T, Matsumoto T, Yoshinaga K (2003) RNA editing in hornwort chloroplasts makes more than half the genes functional. Nucleic Acids Res 31:2417–2423

    Article  PubMed  CAS  Google Scholar 

  • Lamattina L, Weil JH, Grienenberger JM (1989) RNA editing at a splicing site of NADH dehydrogenase subunit IV gene transcript in wheat mitochondria. FEBS Lett 258:79–83

    Article  PubMed  CAS  Google Scholar 

  • Lenz H, Rüdinger M, Volkmar U, Fischer S, Herres S, Grewe F, Knoop V (2010) Introducing the plant RNA editing prediction and analysis computer tool PREPACT and an update on RNA editing site nomenclature. Curr Genet 56:189–201

    Article  PubMed  CAS  Google Scholar 

  • Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Le Ret M, Martin-Magniette ML, Mireau H, Peeters N, Renou JP, Szurek B, Taconnat L, Small I (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16:2089–2103

    Article  PubMed  CAS  Google Scholar 

  • Maier RM, Neckermann K, Hoch B, Akhmedov NB, Kossel H (1992) Identification of editing positions in the ndhB transcript from maize chloroplasts reveals sequence similarities between editing sites of chloroplasts and plant mitochondria. Nucleic Acids Res 20:6189–6194

    Article  PubMed  CAS  Google Scholar 

  • Maier UG, Bozarth A, Funk HT, Zauner S, Rensing SA, Schmitz-Linneweber C, Borner T, Tillich M (2008) Complex chloroplast RNA metabolism: just debugging the genetic programme? BMC Biol 6:36

    Article  PubMed  Google Scholar 

  • Malek O, Lattig K, Hiesel R, Brennicke A, Knoop V (1996) RNA editing in bryophytes and a molecular phylogeny of land plants. EMBO J 15:1403–1411

    PubMed  CAS  Google Scholar 

  • Mower JP (2007) Modeling sites of RNA editing as a fifth nucleotide state reveals progressive loss of edited sites from angiosperm mitochondria. Mol Biol Evol 25:52–61

    Article  PubMed  Google Scholar 

  • Mower JP, Palmer JD (2006) Patterns of partial RNA editing in mitochondrial genes of Beta vulgaris. Mol Genet Genomics 276:285–293

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Sugita M (2008) A conserved DYW domain of the pentatricopeptide repeat protein possesses a novel endoribonuclease activity. FEBS Lett 582:4163–4168

    Article  PubMed  CAS  Google Scholar 

  • Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G, Nakazono M, Hirai A, Kadowaki K (2002) The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol Genet Genomics 268:434–445

    Article  PubMed  CAS  Google Scholar 

  • Ohtani S, Ichinose M, Tasaki E, Aoki Y, Komura Y, Sugita M (2010) Targeted gene disruption identifies three PPR-DYW proteins involved in RNA editing for five editing sites of the moss mitochondrial transcripts. Plant Cell Physiol 51:1942–1949

    Article  PubMed  CAS  Google Scholar 

  • Ohyama K, Takemura M, Oda K, Fukuzawa H, Kohchi T, Nakayama S, Ishizaki K, Fujisawa M, Yamato K (2009) Gene content, organization and molecular evolution of plant organellar genomes and sex chromosomes: insights from the case of the liverwort Marchantia polymorpha. Proc Jpn Acad Ser B Phys Biol Sci 85:108–124

    Article  PubMed  CAS  Google Scholar 

  • Okuda K, Myouga F, Motohashi R, Shinozaki K, Shikanai T (2007) Conserved domain structure of pentatricopeptide repeat proteins involved in chloroplast RNA editing. Proc Natl Acad Sci USA 104:8178–8183

    Article  PubMed  CAS  Google Scholar 

  • Okuda K, Chateigner-Boutin AL, Nakamura T, Delannoy E, Sugita M, Myouga F, Motohashi R, Shinozaki K, Small I, Shikanai T (2009) Pentatricopeptide repeat proteins with the DYW motif have distinct molecular functions in RNA editing and RNA cleavage in Arabidopsis chloroplasts. Plant Cell 21:146–156

    Article  PubMed  CAS  Google Scholar 

  • O’Toole N, Hattori M, Andres C, Iida K, Lurin C, Schmitz-Linneweber C, Sugita M, Small I (2008) On the expansion of the pentatricopeptide repeat gene family in plants. Mol Biol Evol 25:1120–1128

    Article  PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Robbins JC, Heller WP, Hanson MR (2009) A comparative genomics approach identifies a PPR-DYW protein that is essential for C-to-U editing of the Arabidopsis chloroplast accD transcript. RNA 15:1142–1153

    Article  PubMed  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Rüdinger M, Polsakiewicz M, Knoop V (2008) Organellar RNA editing and plant-specific extensions of pentatricopeptide repeat proteins in jungermanniid but not in marchantiid liverworts. Mol Biol Evol 25:1405–1414

    Article  PubMed  Google Scholar 

  • Rüdinger M, Funk HT, Rensing SA, Maier UG, Knoop V (2009) RNA editing: only eleven sites are present in the Physcomitrella patens mitochondrial transcriptome and a universal nomenclature proposal. Mol Genet Genomics 281:473–481

    Article  PubMed  Google Scholar 

  • Rüdinger M, Fritz-Laylin L, Polsakiewicz M, Knoop V (2011a) Plant-type mitochondrial RNA editing in the protist Naegleria gruberi. RNA 17:2058–2062

    Article  PubMed  Google Scholar 

  • Rüdinger M, Szövényi P, Rensing SA, Knoop V (2011b) Assigning DYW-type PPR proteins to RNA editing sites in the funariid mosses Physcomitrella patens and Funaria hygrometrica. Plant J 67:370–380

    Article  PubMed  Google Scholar 

  • Salone V, Rüdinger M, Polsakiewicz M, Hoffmann B, Groth-Malonek M, Szurek B, Small I, Knoop V, Lurin C (2007) A hypothesis on the identification of the editing enzyme in plant organelles. FEBS Lett 581:4132–4138

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Yukawa Y, Miyamoto T, Obokata J, Sugiura M (2003) Identification of RNA editing sites in chloroplast transcripts from the maternal and paternal progenitors of tobacco (Nicotiana tabacum): comparative analysis shows the involvement of distinct trans-factors for ndhB editing. Mol Biol Evol 20:1028–1035

    Article  PubMed  CAS  Google Scholar 

  • Shields DC, Wolfe KH (1997) Accelerated evolution of sites undergoing mRNA editing in plant mitochondria and chloroplasts. Mol Biol Evol 14:344–349

    PubMed  CAS  Google Scholar 

  • Small ID, Peeters N (2000) The PPR motif—a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci 25:46–47

    Article  PubMed  CAS  Google Scholar 

  • Sper-Whitis GL, Russell AL, Vaughn JC (1994) Mitochondrial RNA editing of cytochrome c oxidase subunit II (coxII) in the primitive vascular plant Psilotum nudum. Biochim Biophys Acta 1218:218–220

    PubMed  CAS  Google Scholar 

  • Sper-Whitis GL, Moody JL, Vaughn JC (1996) Universality of mitochondrial RNA editing in cytochrome-c oxidase subunit I (coxI) among the land plants. Biochim Biophys Acta 1307:301–308

    PubMed  Google Scholar 

  • Steinhauser S, Beckert S, Capesius I, Malek O, Knoop V (1999) Plant mitochondrial RNA editing. J Mol Evol 48:303–312

    Article  PubMed  CAS  Google Scholar 

  • Sugita M, Miyata Y, Maruyama K, Sugiura C, Arikawa T, Higuchi M (2006) Extensive RNA editing in transcripts from the PsbB operon and RpoA gene of plastids from the enigmatic moss Takakia lepidozioides. Biosci Biotechnol Biochem 70:2268–2274

    Article  PubMed  CAS  Google Scholar 

  • Sung TY, Tseng CC, Hsieh MH (2010) The SLO1 PPR protein is required for RNA editing at multiple sites with similar upstream sequences in Arabidopsis mitochondria. Plant J 63:499–511

    Article  CAS  Google Scholar 

  • Takenaka M (2010) MEF9, an E-subclass pentatricopeptide repeat protein, is required for an RNA editing event in the nad7 transcript in mitochondria of Arabidopsis. Plant Physiol 152:939–947

    Article  PubMed  CAS  Google Scholar 

  • Takenaka M, Verbitskiy D, Zehrmann A, Brennicke A (2010) Reverse genetic screening identifies five E-class PPR proteins involved in RNA editing in mitochondria of Arabidopsis thaliana. J Biol Chem 285:27122–27129

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tang J, Kobayashi K, Suzuki M, Matsumoto S, Muranaka T (2010) The mitochondrial PPR protein LOVASTATIN INSENSITIVE 1 plays regulatory roles in cytosolic and plastidial isoprenoid biosynthesis through RNA editing. Plant J 61:456–466

    Article  PubMed  CAS  Google Scholar 

  • Tasaki E, Hattori M, Sugita M (2010) The moss pentatricopeptide repeat protein with a DYW domain is responsible for RNA editing of mitochondrial ccmFc transcript. Plant J 62:560–570

    Article  PubMed  CAS  Google Scholar 

  • Tillich M, Funk HT, Schmitz-Linneweber C, Poltnigg P, Sabater B, Martin M, Maier RM (2005) Editing of plastid RNA in Arabidopsis thaliana ecotypes. Plant J 43:708–715

    Article  PubMed  CAS  Google Scholar 

  • Tillich M, Lehwark P, Morton BR, Maier UG (2006) The evolution of chloroplast RNA editing. Mol Biol Evol 23:1912–1921

    Article  PubMed  CAS  Google Scholar 

  • Tsudzuki T, Wakasugi T, Sugiura M (2001) Comparative analysis of RNA editing sites in higher plant chloroplasts. J Mol Evol 53:327–332

    Article  PubMed  CAS  Google Scholar 

  • Vangerow S, Teerkorn T, Knoop V (1999) Phylogenetic information in the mitochondrial nad5 gene of pteridophytes: RNA editing and intron sequences. Plant Biol 1:235–243

    Article  CAS  Google Scholar 

  • Verbitskiy D, Zehrmann A, van der Merwe JA, Brennicke A, Takenaka M (2010) The PPR protein encoded by the LOVASTATIN INSENSITIVE 1 gene is involved in RNA editing at three sites in mitochondria of Arabidopsis thaliana. Plant J 61:446–455

    Article  PubMed  CAS  Google Scholar 

  • Verbitskiy D, Hartel B, Zehrmann A, Brennicke A, Takenaka M (2011) The DYW-E-PPR protein MEF14 is required for RNA editing at site matR-1895 in mitochondria of Arabidopsis thaliana. FEBS Lett 585:700–704

    Article  PubMed  CAS  Google Scholar 

  • Volkmar U, Knoop V (2010) Introducing intron locus cox1i624 for phylogenetic analyses in Bryophytes: on the issue of Takakia as sister genus to all other extant mosses. J Mol Evol 70:506–518

    Article  PubMed  CAS  Google Scholar 

  • Volkmar U, Groth-Malonek M, Heinrichs J, Muhle H, Polsakiewicz M, Knoop V (2011) Exclusive conservation of mitochondrial group II intron nad4i548 among liverworts and its use for phylogenetic studies in this ancient plant clade. Plant Biol. doi:10.1111/j.1438-8677.2011.00499.x

    PubMed  Google Scholar 

  • Wickham H (2009) Ggplot2: elegant graphics for data analysis. Springer, New York

    Google Scholar 

  • Wolf PG, Rowe CA, Hasebe M (2004) High levels of RNA editing in a vascular plant chloroplast genome: analysis of transcripts from the fern Adiantum capillus-veneris. Gene 339:89–97

    Article  PubMed  CAS  Google Scholar 

  • Wolf PG, Karol KG, Mandoli DF, Kuehl J, Arumuganathan K, Ellis MW, Mishler BD, Kelch DG, Olmstead RG, Boore JL (2005) The first complete chloroplast genome sequence of a lycophyte, Huperzia lucidula (Lycopodiaceae). Gene 350:117–128

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga K, Iinuma H, Masuzawa T, Uedal K (1996) Extensive RNA editing of U to C in addition to C to U substitution in the rbcL transcripts of hornwort chloroplasts and the origin of RNA editing in green plants. Nucleic Acids Res 24:1008–1014

    Article  PubMed  CAS  Google Scholar 

  • Yura K, Miyata Y, Arikawa T, Higuchi M, Sugita M (2008) Characteristics and prediction of RNA editing sites in transcripts of the Moss Takakia lepidozioides chloroplast. DNA Res 15:309–321

    Article  PubMed  CAS  Google Scholar 

  • Zehrmann A, Verbitskiy D, van der Merwe JA, Brennicke A, Takenaka M (2009) A DYW domain-containing pentatricopeptide repeat protein is required for RNA editing at multiple sites in mitochondria of Arabidopsis thaliana. Plant Cell 21:558–567

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Cheng Y, Yap A, Chateigner-Boutin AL, Delannoy E, Hammani K, Small I, Huang J (2008) The Arabidopsis gene YS1 encoding a DYW protein is required for editing of rpoB transcripts and the rapid development of chloroplasts during early growth. Plant J 58:82–96

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Jan-Peter Frahm and Dr. Boon-Chuan Ho (University Bonn) for their help to collect bryophyte plant material and to Prof. Wolfgang Alt and Martin Bock (University Bonn) for doing initial MATLAB simulations and help with the Fisher’s exact test. Work in the authors’ laboratory on RNA editing and DYW proteins is supported by DFG Grant Kn411/7, work on liverwort and moss phylogeny was supported by the DFG Grant Kn411/6. Finally, we would like to thank two anonymous reviewers for their helpful suggestions for changes in the manuscript and Julia Hecht for comments on text and language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mareike Rüdinger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Gene family sampling simulation. The graphs show simulations of different genes of a family to be found in a given number of randomly sequenced clones (left: 30 clones, right: 51 clones) assuming an ideal unbiased PCR (uniformly distributed amount of products). Depending on the actual number of different genes and the number of clones sequenced (red line) the number of different genes sampled in the selection can be simulated. Blue dots show the mean of different PPRs drawn from 10,000 replicates. The gray area indicates the 2σ confidence interval (PDF 116 kb)

Supplementary Table S1

Comparison of RNA editing frequencies in selected model plants. RNA editing frequencies (number of sites/coding nucleotides) were calculated on the basis of completely investigated transcriptomes and extrapolated from nad4, nad5 and nad2 alone (XLS 35 kb)

Supplementary Table S2

RNA editing site matrices of the mitochondrial nad5 gene of liverworts. Excel sheets present the matrices of RNA editing sites predicted with Marchantia polymorpha, Chara vulgaris, Arabidopsis thaliana or Physcomitrella patens as reference taxon and the list of common predicted editing sites (Commons). Editing sites confirmed on cDNA level are highlighted in bold. Crosses indicate editing sites which could not be verified on cDNA level. Total numbers of putative editing sites per taxon are listed in a separate column (sum). Multiple RNA editing events simultaneously affecting a single codon are listed as one editing event, numbers of multisteps are indicated in the column “multistep” (XLS 204 kb)

Supplementary Table S3

RNA editing site matrices of the mitochondrial nad4 gene of liverworts. Excel sheets present the matrices of RNA editing sites predicted with Marchantia polymorpha, Chara vulgaris, Arabidopsis thaliana or Physcomitrella patens as reference taxon and the list of common predicted editing sites (Commons). Editing sites confirmed on cDNA level are highlighted in bold. Crosses indicate editing sites which could not be verified on cDNA level. Total numbers of putative editing sites per taxon are listed in a separate column (sum). Multiple RNA editing events simultaneously affecting a single codon are listed as one editing event, numbers of multisteps are indicated in the column “multistep” (XLS 221 kb)

Supplementary Table S4

RNA editing site matrices of the mitochondrial nad5 gene of mosses. Excel sheets present the matrices of RNA editing sites predicted with Marchantia polymorpha, Chara vulgaris, Arabidopsis thaliana or Physcomitrella patens as reference taxon and the list of common predicted editing sites (Commons). Editing sites confirmed on cDNA level are highlighted in bold. Crosses indicate editing sites which could not be verified on cDNA level. Total numbers of putative editing sites per taxon are listed in a separate column (sum). Multiple RNA editing events simultaneously affecting a single codon are listed as one editing event, numbers of multisteps are indicated in the column “multistep” (XLS 174 kb)

Supplementary Table S5

RNA editing site matrices of the mitochondrial nad2 gene of mosses. Excel sheets present the matrices of RNA editing sites predicted with Marchantia polymorpha, Chara vulgaris, Arabidopsis thaliana or Physcomitrella patens as reference taxon and the list of common predicted editing sites (Commons). Editing sites confirmed on cDNA level are highlighted in bold. Crosses indicate editing sites which could not be verified on cDNA level. Total numbers of putative editing sites per taxon are listed in a separate column (sum). Multiple RNA editing events simultaneously affecting a single codon are listed as one editing event, numbers of multisteps are indicated in the column “multistep” (XLS 128 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rüdinger, M., Volkmar, U., Lenz, H. et al. Nuclear DYW-Type PPR Gene Families Diversify with Increasing RNA Editing Frequencies in Liverwort and Moss Mitochondria. J Mol Evol 74, 37–51 (2012). https://doi.org/10.1007/s00239-012-9486-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-012-9486-3

Keywords

Navigation