Skip to main content
Log in

Signatures of Natural Selection in a Primate Bitter Taste Receptor

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Bitter taste receptors (TAS2Rs) enable animals to detect and avoid toxins in the environment, including noxious defense compounds produced by plants. This suggests that TAS2Rs are under complex pressures from natural selection. To investigate these pressures, we examined signatures of selection in the primate TAS2R38 gene. Whole-gene (1,002 bp) sequences from 40 species representing all major primate taxa uncovered extensive variation. Nucleotide substitutions occurred at 448 positions, resulting in 201 amino acid changes. Two single-nucleotide deletions, one three-nucleotide in-frame deletion, and one premature stop codon were also observed. The rate of non-synonymous substitution (ω = dN/dS), was high in TAS2R38 (ω = 0.60) compared to other genes, but significantly lower than expected under neutrality (P = 4.0 × 10−9), indicating that purifying selection has maintained the basic structure of the receptor. However, differences were present among receptor subregions. Non-synonymous rates were significantly lower than expected in transmembrane domains (ω = 0.55, P = 1.18 × 10−12) and internal loops (ω = 0.51, P = 7.04 × 10−5), but not external loops (ω = 1.16, P = 0.53), and evidence of positive selection was found in external loop 2, which exhibited a high rate (ω = 2.53) consistent with rapid shifts in ligand targeting. These patterns point to a history of rapid yet constrained change in bitter taste responses in the course of primate evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS (2000) A novel family of mammalian taste receptors. Cell 100:693–702

    Article  PubMed  CAS  Google Scholar 

  • Behrens M, Brockhoff A, Kuhn C, Bufe B, Winnig M, Meyerhof W (2004) The human taste receptor hTAS2R14 responds to a variety of different bitter compounds. Biochem Biophys Res Commun 319:479–485

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  • Bufe B, Hofmann T, Krautwurst D, Raguse JD, Meyerhof W (2002) The human TAS2R16 receptor mediates bitter taste in response to beta-glucopyranosides. Nat Genet 32:397–401

    Article  PubMed  CAS  Google Scholar 

  • Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, Guo W, Zuker CS, Ryba NJ (2000) T2Rs function as bitter taste receptors. Cell 100:703–711

    Article  PubMed  CAS  Google Scholar 

  • Chiarelli B (1963) Sensitivity to P.T.C. (phenyl-thio-carbamide) in primates. Folia Primatol 1:73–87

    Article  Google Scholar 

  • Eaton JW, Gavan JA (1965) Sensitivity to P-T-C among primates. Am J Phys Anthropol 23:381–388

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (2007) PHYLIP (Phylogeny Inference Package) version 3.65. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

  • Fischer A, Gilad Y, Man O, Pääbo S (2005) Evolution of bitter taste receptors in humans and apes. Mol Biol Evol 22:432–436

    Article  PubMed  CAS  Google Scholar 

  • Floriano W, Hall S, Vaidehi N, Kim U, Drayna D, Goddard W (2006) Modeling the human PTC bitter-taste receptor interactions with bitter tastants. J Mol Model 12:931–941

    Article  PubMed  CAS  Google Scholar 

  • Furlong RF, Yang Z (2008) Diversifying and purifying selection in the peptide binding region of DRB in mammals. J Mol Evol 66:384–394

    Article  PubMed  CAS  Google Scholar 

  • Hoon MA, Adler E, Lindemeier J, Battey JF, Ryba NJ, Zuker CS (1999) Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell 96:541–551

    Article  PubMed  CAS  Google Scholar 

  • Ivanov AA, Barak D, Jacobson KA (2009) Evaluation of homology modeling of G-protein-coupled receptors in light of the A(2A) adenosine receptor crystallographic structure. J Med Chem 52:3284–3294

    Article  PubMed  CAS  Google Scholar 

  • Kim UK, Jorgenson E, Coon H, Leppert M, Risch N, Drayna D (2003) Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science 299:1221–1225

    Article  PubMed  CAS  Google Scholar 

  • Kim U, Wooding S, Ricci D, Jorde LB, Drayna D (2005) Worldwide haplotype diversity and coding sequence variation at human bitter taste receptor loci. Hum Mutat 26:199–204

    Article  PubMed  CAS  Google Scholar 

  • Meyerhof W, Batram C, Kuhn C, Brockhoff A, Chudoba E, Bufe B, Appendino G, Behrens M (2010) The molecular receptive ranges of human TAS2R bitter taste receptors. Chem Senses 35:157–170

    Article  PubMed  CAS  Google Scholar 

  • Okada T, Ernst OP, Palczewski K, Hofmann KP (2001) Activation of rhodopsin: new insights from structural and biochemical studies. Trends Biochem Sci 26:318–324

    Article  PubMed  CAS  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289:739–745

    Article  PubMed  CAS  Google Scholar 

  • Parry CM, Erkner A, le Coutre J (2004) Divergence of T2R chemosensory receptor families in humans, bonobos, and chimpanzees. Proc Natl Acad Sci USA 101:14830–14834

    Article  PubMed  CAS  Google Scholar 

  • Purvis A (1995) A composite estimate of primate phylogeny. Philos Trans R Soc Lond B Biol Sci 348:405–421

    Article  PubMed  CAS  Google Scholar 

  • Sainz E, Cavenagh M, Gutierrez J, Battey J, Northup J, Sullivan S (2007) Functional characterization of human bitter taste receptors. Biochem J 403:537–543

    Article  PubMed  CAS  Google Scholar 

  • Shi P, Zhang J (2006) Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes. Mol Biol Evol 23:292–300

    Article  PubMed  CAS  Google Scholar 

  • Shi P, Zhang J, Yang H, Zhang YP (2003) Adaptive diversification of bitter taste receptor genes in Mammalian evolution. Mol Biol Evol 20:805–814

    Article  PubMed  CAS  Google Scholar 

  • Soranzo N, Bufe B, Sabeti PC, Wilson JF, Weale ME, Marguerie R, Meyerhof W, Goldstein DB (2005) Positive selection on a high-sensitivity allele of the human bitter-taste receptor TAS2R16. Curr Biol 15:1257–1265

    Article  PubMed  CAS  Google Scholar 

  • Strotmann R, Schrock K, Boselt I, Staubert C, Russ A, Schoneberg T (2011) Evolution of GPCR: change and continuity. Mol Cell Endocrinol 331:170–178

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Sugawara T, Matsui A, Go Y, Hirai H, Imai H (2011) Identification of non-taster Japanese macaques for a specific bitter taste. Primates 51:285–289

    Article  Google Scholar 

  • Toll-Riera M, Laurie S, Alba MM (2011) Lineage-specific variation in intensity of natural selection in mammals. Mol Biol Evol 28:383–398

    Article  PubMed  CAS  Google Scholar 

  • Vaidehi N, Floriano WB, Trabanino R, Hall SE, Freddolino P, Choi EJ, Zamanakos G, Goddard WA (2002) Prediction of structure and function of G protein-coupled receptors. Proc Natl Acad Sci USA 99:12622–12627

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Thomas SD, Zhang J (2004) Relaxation of selective constraint and loss of function in the evolution of human bitter taste receptor genes. Hum Mol Genet 13:2671–2678

    Article  PubMed  CAS  Google Scholar 

  • Wooding S, Kim UK, Bamshad MJ, Larsen J, Jorde LB, Drayna D (2004) Natural selection and molecular evolution in PTC, a bitter-taste receptor gene. Am J Hum Genet 74:637–646

    Article  PubMed  CAS  Google Scholar 

  • Wooding S, Bufe B, Grassi C, Howard M, Stone A, Vazquez M, Dunn D, Meyerhof W, Weiss R, Bamshad M (2006) Independent evolution of bitter-taste sensitivity in humans and chimpanzees. Nature 440:930–934

    Article  PubMed  CAS  Google Scholar 

  • Wooding S, Gunn H, Ramos P, Thalmann S, Meyerhof W (2010) Genetics and bitter taste responses to goitrin, a plant toxin found in vegetables. Chem Senses 35:685–692

    Article  PubMed  CAS  Google Scholar 

  • Xia X, Xie Z (2001) DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92:371

    Article  PubMed  CAS  Google Scholar 

  • Xia X, Xie Z, Salemi M, Chen L, Wang Y (2003) An index of substitution saturation and its application. Mol Phylogenet Evol 26:1

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic Analysis by Maximum Likelihood. Mol Biol Evol 24:1586

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Wong W, Nielsen R (2005) Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Wooding.

Additional information

DNA sequences analyzed in this study are deposited in GenBank with IDs JQ272198–JQ272237.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wooding, S. Signatures of Natural Selection in a Primate Bitter Taste Receptor. J Mol Evol 73, 257–265 (2011). https://doi.org/10.1007/s00239-011-9481-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-011-9481-0

Keywords

Navigation