Skip to main content
Log in

The Role of Pseudo-Endoglucanases in the Evolution of Nematode Cell Wall-Modifying Proteins

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

In this article, the characterization and evolution of pseudo-endoglucanases and a putative expansin-like gene in the migratory nematode Ditylenchus africanus are described. Four genes were cloned with a very high similarity to the endoglucanase Da-eng1, which, however, lack a part of the catalytic domain most probably due to homologous recombination. Owing to this deletion, at least one of the catalytic residues of the corresponding protein is missing, and hence these genes are possibly pseudogenes. In two of the pseudo-endoglucanase genes, the deletions cause a frameshift (Da-engdel2, Da-engdel4), while two others (Da-engdel1, Da-engdel3) code for protein sequences with an intact carbohydrate-binding module (CBM). Recombinant proteins for Da-ENG1, Da-ENGDEL1, and Da-ENGDEL3 were demonstrated to bind to cellulose, while only Da-ENG1 showed cellulose-degrading activity. This indicates that Da-ENGDEL1 and Da-ENGDEL3 which lack cellulase activity, could still exert a function similar to cellulose-binding proteins (CBPs). Next to the pseudo-endoglucanases, a putative expansin-like gene (Da-exp1) was identified, consisting of a signal peptide, an expansin-like domain, and a CBM. This domain structure was never found before in nematode expansin-like proteins. Interestingly, the CBM of the expansin-like gene is very similar to the endoglucanase CBMs, and a conserved intron position in the CBM of nematode endoglucanases, expansin-like genes, and CBPs indicates a common origin for these domains. This suggests that domain shuffling is an important mechanism in the evolution of cell wall-modifying enzymes in nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abad P, Gouzy J, Aury JM, Castagnone-Sereno P, Danchin EGJ, Deleury E, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok VC, Caillaud MC, Coutinho PM, Dasilva C, De Luca F, Deau F, Esquibet M, Flutre T, Goldstone JV, Hamamouch N, Hewezi T, Jaillon O, Jubin C, Leonetti P, Magliano M, Maier TR, Markov GV, McVeigh P, Pesole G, Poulain J, Robinson-Rechavi M, Sallet E, Segurens B, Steinbach D, Tytgat T, Ugarte E, van Ghelder C, Veronico P, Baum TJ, Blaxter M, Bleve-Zacheo T, Davis EL, Ewbank JJ, Favery B, Grenier E, Henrissat B, Jones JT, Laudet V, Maule AG, Quesneville H, Rosso MN, Schiex T, Smant G, Weissenbach J, Wincker P (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26:909–915

    Article  CAS  PubMed  Google Scholar 

  • Adam MAM, Phillips MS, Jones JT, Blok VC (2008) Characterisation of the cellulose-binding protein Mj-cbp-1 of the root knot nematode, Meloidogyne javanica. Physiol Mol Plant Pathol 72:21–28

    Article  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  • Bera-Maillet C, Arthaud L, Abad P, Rosso MN (2000) Biochemical characterization of MI-ENG1, a family 5 endoglucanase secreted by the root-knot nematode Meloidogyne incognita. Eur J Biochem 267:3255–3263

    Article  CAS  PubMed  Google Scholar 

  • Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, Vida JT, Thomas WK (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392:71–75

    Article  CAS  PubMed  Google Scholar 

  • Bolla RI, Weaver C, Winter REK (1988) Genomic differences among pathotypes of Bursaphelenchus xylophilus. J Nematol 20:309–316

    CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2000a) Loosening of plant cell walls by expansins. Nature 407:321–326

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2000b) New genes and new biological roles for expansins. Curr Opin Plant Biol 3:73–78

    Article  CAS  PubMed  Google Scholar 

  • D’Errico I, Gadaleta G, Saccone C (2004) Pseudogenes in metazoa: origin and features. Brief Funct Genomic Proteomic 3:157–167

    Article  PubMed  Google Scholar 

  • De Waele D, Venter C, McDonald AH (1997) The peanut pod nematode, Ditylenchus africanus. Nematol Circ Fla Dpt Agric 218:1–6

    Google Scholar 

  • Ding X, Shields J, Allen R, Hussey RS (1998) A secretory cellulose-binding protein cDNA cloned from the root-knot nematode (Meloidogyne incognita). Mol Plant Microbe Interact 11:952–959

    Article  CAS  PubMed  Google Scholar 

  • Dumas B, Bottin A, Gaulin E, Esquerre-Tugaye MT (2008) Cellulose-binding domains: cellulose associated-defensive sensing partners? Trends Plant Sci 13:160–164

    Article  CAS  PubMed  Google Scholar 

  • Galli A, Schiestl RH (1995) On the mechanism of UV and gamma-ray induced intrachromosomal recombination in yeast cells synchronized in different stages of the cell cycle. Mol Gen Genet 248:301–310

    Article  CAS  PubMed  Google Scholar 

  • Gao B, Allen R, Maier T, Davis EL, Baum TJ, Hussey RS (2002) Identification of a new beta-1,4-endoglucanase gene expressed in the esophageal subventral gland cells of Heterodera glycines. J Nematol 34:12–15

    CAS  PubMed  Google Scholar 

  • Gao B, Allen R, Davis EL, Baum TJ, Hussey RS (2004a) Molecular characterisation and developmental expression of a cellulose-binding protein gene in the soybean cyst nematode Heterodera glycines. Int J Parasitol 34:1377–1383

    Article  CAS  PubMed  Google Scholar 

  • Gao BL, Allen R, Davis EL, Baum TJ, Hussey RS (2004b) Developmental expression and biochemical properties of a beta-1,4-endoglucanase family in the soybean cyst nematode, Heterodera glycines. Mol Plant Pathol 5:93–104

    Article  CAS  Google Scholar 

  • Goellner M, Smant G, de Boer JM, Baum TJ, Davis EL (2000) Isolation of beta-1,4-endoglucanase genes from Globodera tabacum and their expression during parasitism. J Nematol 32:154–165

    CAS  PubMed  Google Scholar 

  • Haegeman A, Jacob J, Vanholme B, Kyndt T, Gheysen G (2008) A family of GHF5 endo-1,4-beta-glucanases in the migratory plant-parasitic nematode Radopholus similis. Plant Pathol 57:581–590

    Article  CAS  Google Scholar 

  • Haegeman A, Jacob J, Vanholme B, Kyndt T, Mitreva M, Gheysen G (2009) Expressed sequence tags of the peanut pod nematode Ditylenchus africanus: the first transcriptome analysis of an Anguinid nematode. Mol Biochem Parasitol 167:32–40

    Article  CAS  PubMed  Google Scholar 

  • Hewezi T, Howe P, Maier TR, Hussey RS, Goellner Mitchum M, Davis EL, Baum TJ (2008) Cellulose binding protein from the parasitic nematode Heterodera schachtii interacts with Arabidopsis pectin methylesterase: cooperative cell wall modification during parasitism. Plant Cell 20:3080–3093

    Article  CAS  PubMed  Google Scholar 

  • Jones JT, Furlanetto C, Kikuchi T (2005) Horizontal gene transfer from bacteria and fungi as a driving force in the evolution of plant parasitism in nematodes. Nematology 7:641–646

    Article  CAS  Google Scholar 

  • Kikuchi T, Jones JT, Aikawa T, Kosaka H, Ogura N (2004) A family of glycosyl hydrolase family 45 cellulases from the pine wood nematode Bursaphelenchus xylophilus. FEBS Lett 572:201–205

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi T, Aikawa T, Kosaka H, Pritchard L, Ogura N, Jones JT (2007) Expressed sequence tag (EST) analysis of the pine wood nematode Bursaphelenchus xylophilus and B. mucronatus. Mol Biochem Parasitol 155:9–17

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi T, Li HM, Karim N, Kennedy MW, Moens M, Jones JT (2009) Identification of putative expansin-like genes from the pine wood nematode, Bursaphelenchus xylophilus, and evolution of the expansin gene family within the Nematoda. Nematology 11:355–364

    Article  CAS  Google Scholar 

  • Kudla U, Qin L, Milac A, Kielak A, Maissen C, Overmars H, Popeijus H, Roze E, Petrescu A, Smant G, Bakker J, Helder J (2005) Origin, distribution and 3D-modeling of Gr-EXPB1, an expansin from the potato cyst nematode Globodera rostochiensis. FEBS Lett 579:2451–2457

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  CAS  PubMed  Google Scholar 

  • Kyndt T, Haegeman A, Gheysen G (2008) Evolution of GHF5 endoglucanase gene structure in plant-parasitic nematodes: no evidence for an early domain shuffling event. BMC Evol Biol 8:305

    Article  PubMed  Google Scholar 

  • Ledger TN, Jaubert S, Bosselut N, Abad P, Rosso MN (2006) Characterization of a new beta-1,4-endoglucanase gene from the root-knot nematode Meloidogyne incognita and evolutionary scheme for phytonematode family 5 glycosyl hydrolases. Gene 382:121–128

    Article  CAS  PubMed  Google Scholar 

  • Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, Bork P (2006) SMART 5: domains in the context of genomes and networks. Nucleic Acids Res 34:D257–D260

    Article  CAS  PubMed  Google Scholar 

  • Moody EH, Lownsbery BF, Ahmed JM (1973) Culture of root-lesion nematode Pratylenchus vulnus on carrot disks. J Nematol 5:225–226

    CAS  PubMed  Google Scholar 

  • Opperman CH, Bird DM, Williamson VM, Rokhsar DS, Burke M, Cohn J, Cromer J, Diener S, Gajan J, Graham S, Houfek TD, Liu Q, Mitros T, Schaff J, Schaffer R, Scholl E, Sosinski BR, Thomas VP, Windham E (2008) Sequence and genetic map of Meloidogyne hapla: a compact nematode genome for plant parasitism. Proc Natl Acad Sci USA 105:14802–14807

    Article  CAS  PubMed  Google Scholar 

  • Pascarella S, Argos P (1992) Analysis of insertions/deletions in protein structures. J Mol Biol 224:461–471

    Article  CAS  PubMed  Google Scholar 

  • Qin L, Kudla U, Roze EHA, Goverse A, Popeijus H, Nieuwland J, Overmars H, Jones JT, Schots A, Smant G, Bakker J, Helder J (2004) Plant degradation: a nematode expansin acting on plants. Nature 427:30

    Article  CAS  PubMed  Google Scholar 

  • Rehman S, Butterbach P, Popeijus H, Overmars H, Davis EL, Jones JT, Goverse A, Bakker J, Smant G (2009) Identification and characterization of the most abundant cellulases in stylet secretions from Globodera rostochiensis. Phytopathology 99:194–202

    Article  CAS  PubMed  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277

    Article  CAS  PubMed  Google Scholar 

  • Rosso MN, Favery B, Piotte C, Arthaud L, de Boer JM, Hussey RS, Bakker J, Baum TJ, Abad P (1999) Isolation of a cDNA encoding a beta-1,4-endoglucanase in the root-knot nematode Meloidogyne incognita and expression analysis during plant parasitism. Mol Plant Microbe Interact 12:585–591

    Article  CAS  PubMed  Google Scholar 

  • Sampedro J, Cosgrove DJ (2005) The expansin superfamily. Genome Biol 6:242–250

    Article  PubMed  Google Scholar 

  • Semblat JP, Rosso MN, Hussey RS, Abad P, Castagnone-Sereno P (2001) Molecular cloning of a cDNA encoding an amphid-secreted putative avirulence protein from the root-knot nematode Meloidogyne incognita. Mol Plant Microbe Interact 14:72–79

    Article  CAS  PubMed  Google Scholar 

  • Smant G, Stokkermans JPWG, Yan YT, de Boer JM, Baum TJ, Wang XH, Hussey RS, Gommers FJ, Henrissat B, Davis EL, Helder J, Schots A, Bakker J (1998) Endogenous cellulases in animals: Isolation of beta-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc Natl Acad Sci USA 95:4906–4911

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W—improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  • Uehara T, Kushida A, Momota Y (2001) PCR-based cloning of two beta-1,4-endoglucanases from the root-lesion nematode Pratylenchus penetrans. Nematology 3:335–341

    Article  CAS  Google Scholar 

  • van Megen H, van den Elsen S, Holterman M, Karssen G, Mooyman P, Bongers T, Holovachov O, Bakker J, Helder J (2009) A phylogenetic tree of nematodes based on about 1, 200 full length small subunit ribosomal DNA sequences. Nematology 11:927–950

    Article  Google Scholar 

  • Wang ZY, Martin J, Abubucker S, Yin Y, Gasser RB, Mitreva M (2009) Systematic analysis of insertions and deletions specific to nematode proteins and their proposed functional and evolutionary relevance. BMC Evol Biol 9:23

    Article  CAS  PubMed  Google Scholar 

  • Wylie T, Martin JC, Dante M, Mitreva MD, Clifton SW, Chinwalla A, Waterston RH, Wilson RK, McCarter JP (2004) Nematode.net: a tool for navigating sequences from parasitic and free-living nematodes. Nucleic Acids Res 32:D423–D426

    Article  CAS  PubMed  Google Scholar 

  • Yan YT, Smant G, Davis E (2001) Functional screening yields a new beta-1,4-endoglucanase gene from Heterodera glycines that may be the product of recent gene duplication. Mol Plant Microbe Interact 14:63–71

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. A. McDonald and Dr. H. Fourie (ARC-GCI, Potchefstroom, South Africa) for kindly providing the initial D. africanus culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Godelieve Gheysen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 40 kb)

(EPS 180 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haegeman, A., Kyndt, T. & Gheysen, G. The Role of Pseudo-Endoglucanases in the Evolution of Nematode Cell Wall-Modifying Proteins. J Mol Evol 70, 441–452 (2010). https://doi.org/10.1007/s00239-010-9343-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-010-9343-1

Keywords

Navigation