Skip to main content
Log in

An Overview of the Introns-First Theory

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

We review the introns-first hypothesis a decade after it was first proposed. It is that exons emerged from non-coding regions interspersed between RNA genes in an early RNA world, and is a subcomponent of a more general ‘RNA-continuity’ hypothesis. The latter is that some RNA-based systems, especially in RNA processing, are ‘relics’ that can be traced back either to the RNA world that preceded both DNA and encoded protein synthesis or to the later ribonucleoprotein (RNP) world (before DNA took over the main coding role). RNA-continuity is based on independent evidence—in particular, the relative inefficiency of RNA catalysis compared with protein catalysis—and leads to a wide range of predictions, ranging from the origin of the ribosome, the spliceosome, small nucleolar RNAs, RNases P and MRP, and mRNA, and it is consistent with the wide involvement of RNA-processing and regulation of RNA in modern eukaryotes. While there may still be cause to withhold judgement on intron origins, there is strong evidence against introns being uncommon in the last eukaryotic common ancestor (LECA), and expanding only within extant eukaryotic groups—the ‘very-late’ intron invasion model. Similarly, it is clear that there are selective forces on numbers and positions of introns; their existence may not always be neutral. There is still a range of viable alternatives, including introns first, early, and ‘latish’ (i.e. well established in LECA), and regardless of which is ultimately correct, it pays to separate out various questions and to focus on testing the predictions of sub-theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bokov K, Sergey V, Steinberg SV (2009) A hierarchical model for evolution of 23S ribosomal RNA. Nature 457:977–980

    CAS  PubMed  Google Scholar 

  • Brown JWS, Marshall DF, Echeverria M (2008) Intronic noncoding RNAs and splicing. Trends Plant Sci 13:335–342

    CAS  PubMed  Google Scholar 

  • Carmel L, Rogozin IB, Wolf YI, Koonin EV (2007) Evolutionarily conserved genes preferentially accumulate introns. Genome Res 17:1045–1050

    CAS  PubMed  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    CAS  PubMed  Google Scholar 

  • Castillo-Davis CI, Mekhedov SL, Hartl DL, Koonin EV, Kondrashov FA (2002) Selection for short introns in highly expressed genes. Nat Genet 31:415–418

    CAS  PubMed  Google Scholar 

  • Catania F, Lynch M (2008) Where do introns come from? PLoS Biol 6:e283

    PubMed  Google Scholar 

  • Catania F, Gao X, Scofield DG (2009) Endogenous mechanisms for the origins of spliceosomal introns. J Hered 100:591–596

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (2002) The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52:297–354

    CAS  PubMed  Google Scholar 

  • Cech TR (2009) Crawling out of the RNA world. Cell 136:599–602

    CAS  PubMed  Google Scholar 

  • Collins LJ, Chen XS (2009) Ancestral RNA: The RNA biology of the eukaryotic ancestor. RNA Biol 6 (in press)

  • Collins LJ, Penny D (2005) Complex spliceosomal organization ancestral to extant eukaryotes. Mol Biol Evol 22:1053–1066

    CAS  PubMed  Google Scholar 

  • Collins LJ, Penny D (2009) The RNA-infrastructure: dark matter of the eukaryote cell? Trends Genet 25:120–128

    CAS  PubMed  Google Scholar 

  • Collins LJ, Kurland CG, Biggs P, Penny D (2009) The modern RNP world of eukaryotes. J Hered 100:597–604

    CAS  PubMed  Google Scholar 

  • Coulombe-Huntington J, Majewski J (2007) Characterization of intron loss events in mammals. Genome Res 17:23–32

    CAS  PubMed  Google Scholar 

  • Darnell JE, Doolittle WF (1986) Speculations on the early course of evolution. Proc Natl Acad Sci USA 83:1271–1275

    CAS  PubMed  Google Scholar 

  • Das S (2009) Evolutionary origin and genomic organisation of micro-RNA genes in immunoglobulin Lambda variable region gene family. Mol Biol Evol 26:1179–1189

    CAS  PubMed  Google Scholar 

  • Davila Lopez M, Rosenblad MA, Samuelsson T (2008) Computational screen for spliceosomal RNA genes aids in defining the phylogenetic distribution of major and minor spliceosomal components. Nucleic Acids Res 36:3001–3010

    PubMed  Google Scholar 

  • De Duve C (2007) The origin of eukaryotes: a reappraisal. Nat Rev Genet 8:395–403

    PubMed  Google Scholar 

  • De Nooijer S, Holland BR, Penny D (2009) Eukaryote origins: there was no Garden of Eden? PLoS One 4:e5507

    PubMed  Google Scholar 

  • Del Campo M, Recinos C, Yanez G, Pomerantz SC, Guymon R, Crain PF, McCloskey JA, Ofengand J (2005) Number, position, and significance of the pseudouridines in the large subunit ribosomal RNA of Haloarcula marismortui and Deinococcus radiodurans. RNA 11:210–219

    PubMed  Google Scholar 

  • Dennis PP, Omer A (2005) Small non-coding RNAs in Archaea. Curr Opin Microbiol 8:685–694

    CAS  PubMed  Google Scholar 

  • Dennis PP, Russell AG, Moniz De Sá M (1997) Formation of the 5′ end pseudoknot in small subunit ribosomal.RNA: involvement of U3-like sequences. RNA 3:337–343

    CAS  PubMed  Google Scholar 

  • Dennis PP, Omer A, Lowe T (2001) A guided tour: small RNA function in Archaea. Mol Microbiol 40:509–519

    CAS  PubMed  Google Scholar 

  • Derelle E, Ferraz C, Rombauts S et al (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci USA 103:11647–11652

    CAS  PubMed  Google Scholar 

  • Di Giulio M (2008a) The split genes of Nanoarchaeum equitans are an ancestral character. Gene 421:20–26

    PubMed  Google Scholar 

  • Di Giulio M (2008b) Split genes, ancestral genes. In: Wong JT-F, Lazcano A (eds) Prebiotic evolution and astrobiology. Landes Bioscience, Austin

    Google Scholar 

  • Egel R, Penny D (2007) On the origin of meiosis in eukaryotic evolution: coevolution of meiosis and mitosis from feeble beginnings. In: Egel R, Lankenau D-H (eds) Recombination and meiosis: models, means, evolution. Springer, Berlin, pp 249–288

    Google Scholar 

  • Eigen M (1992) Steps toward life: a perspective on evolution. Oxford University Press, Oxford

    Google Scholar 

  • Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623–630

    CAS  PubMed  Google Scholar 

  • Fedorov A, Fedorova L (2004) Introns: mighty elements from the RNA world. J Mol Evol 59:718–721

    CAS  PubMed  Google Scholar 

  • Fedorov A, Roy S, Fedorova L, Gilbert W (2003) Mystery of intron gain. Genome Res 13:2236–2241

    CAS  PubMed  Google Scholar 

  • Forterre P (1995) Thermoreduction, a hypothesis for the origin of prokaryotes. C R Acad Sci Paris Life Sci 318:415–422

    CAS  Google Scholar 

  • Forterre P, Gribaldo S (2007) The origin of modern terrestrial life. HFSP J 1:156–168

    CAS  PubMed  Google Scholar 

  • Gaffney DJ, Keightley PD (2006) Genomic selective constraints in murid noncoding DNA. PLoS Genet 2:1912–1923

    CAS  Google Scholar 

  • Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S, Wilkinson AC, Finn RD, Griffiths-Jones S, Eddy SR, Bateman A (2009) Rfam: updates to the RNA families database. Nucleic Acids Res 37:D136–D140

    CAS  PubMed  Google Scholar 

  • Gaspin C, Cavaillé J, Erauso G, Bachellerie J (2000) Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes. J Mol Biol 297:895–906

    CAS  PubMed  Google Scholar 

  • Gazave E, Marques-Bonet T, Fernando O, Charlesworth B, Navarro A (2007) Patterns and rates of intron divergence between humans and chimpanzees. Genome Biol 8:R21

    PubMed  Google Scholar 

  • Gilbert W (1987) The exon theory of genes. Cold Spring Harbor Symp Quant Biol 52:901–905

    CAS  PubMed  Google Scholar 

  • Gilbert W, de Souza SJ (1999) Introns and the RNA world. In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA world, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 221–231

    Google Scholar 

  • Goddard MR, Burt A (1999) Recurrent invasion and extinction of a selfish gene. Proc Natl Acad Sci USA 96:13880–13885

    CAS  PubMed  Google Scholar 

  • Guo XY, Wang Y, Keightley PD, Fan LJ (2007) Patterns of selective constraints in noncoding DNA of rice. BMC Evol Biol 7:e208

    Google Scholar 

  • Halligan DL, Keightley PD (2006) Ubiquitous selective constraints in the Drosophila genome revealed by a genome-wide interspecies comparison. Genome Res 16:875–884

    CAS  PubMed  Google Scholar 

  • Hartman A, Fedorov A (2002) The origin of the eukaryotic cell: a genomic investigation. Proc Natl Acad Sci USA 99:1420–1425

    CAS  PubMed  Google Scholar 

  • Hetzer M, Wurzer G, Schweyen RJ, Mueller MW (1997) Trans-activation of group II intron splicing by nuclear U5 snRNA. Nature 386:417–420

    CAS  PubMed  Google Scholar 

  • Hickey DA (1992) Evolutionary dynamics of transposable elements in prokaryotes and eukaryotes. Genetica 86:269–274

    CAS  PubMed  Google Scholar 

  • Holzmann J, Frank P, Loffler E, Bennett KL, Gerner C, Rossmanith W (2008) RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 135:462–474

    CAS  PubMed  Google Scholar 

  • Irimia M, Penny D, Roy SW (2007a) Coevolution of genomic intron number and splice sites. Trends Genet 23:321–325

    CAS  PubMed  Google Scholar 

  • Irimia M, Rukov JL, Penny D, Roy SW (2007b) Functional and evolutionary analysis of alternatively spliced genes suggests an early eukaryotic origin of alternative splicing. BMC Evol Biol 7:188

    PubMed  Google Scholar 

  • Irimia M, Rukov JL, Penny D, Vinther J, Garcia-Fernandez J, Roy SW (2008) Origin of introns by ‘intronization’ of exonic sequences. Trends Genet 24:378–381

    CAS  PubMed  Google Scholar 

  • Jeffares DC, Poole AM, Penny D (1998) Relics from the RNA world. J Mol Evol 46:18–36

    CAS  PubMed  Google Scholar 

  • Jeffares DC, Mourier T, Penny D (2006) The biology of intron gain and loss. Trends Genet 22:16–22

    CAS  PubMed  Google Scholar 

  • Jeffares DC, Penkett CJ, Bähler J (2008) Rapidly regulated genes are intron poor. Trends Genet 24:375–378

    CAS  PubMed  Google Scholar 

  • Jurica MS, Moore MJ (2003) Pre-mRNA splicing awash in a sea of proteins. Mol Cell 12:5–14

    CAS  PubMed  Google Scholar 

  • Keeling PJ, Burger G, Durnford DG, Lang BF, Lee RW, Perlman RE, Roger AJ, Gray MW (2005) The tree of eukaryotes. Trends Ecol Evol 20:670–676

    PubMed  Google Scholar 

  • Koonin EV (2006) The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? Biol Direct 1:22

    PubMed  Google Scholar 

  • Kurland CG, Collins LJ, Penny D (2006) Genomics and the irreducible nature of eukaryote cells. Science 312:1011–1014

    CAS  PubMed  Google Scholar 

  • Lane CE, van den Heuvel K, Kozera C et al (2007) Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function. Proc Natl Acad Sci USA 104:19908–19913

    CAS  PubMed  Google Scholar 

  • Lecompte O, Ripp R, Thierry JC, Moras D, Poch O (2002) Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale. Nucleic Acids Res 30:5382–5390

    CAS  PubMed  Google Scholar 

  • Lehman N (2003) A case for the extreme antiquity of recombination. J Mol Evol 56:770–777

    CAS  PubMed  Google Scholar 

  • Lincoln TA, Joyce GF (2009) Self-sustained replication of an RNA enzyme. Science 323:1229–1232

    CAS  PubMed  Google Scholar 

  • Llopart A, Comeron JM, Brunet FG, Lachaise D, Long M (2002) Intron presence-absence polymorphism in Drosophila driven by positive Darwinian selection. Proc Natl Acad Sci USA 99:8121–8126

    CAS  PubMed  Google Scholar 

  • Logsdon JM (1998) The recent origin of spliceosomal introns revisited. Curr Opin Genet Dev 8:637–648

    CAS  PubMed  Google Scholar 

  • Logsdon JM Jr, Tyshenko MG, Dixon C, Jafari D-J, Walker VK, Palmer JD (1995) Seven newly discovered intron positions in the triose-phosphate isomerase gene: evidence for the introns-late theory. Proc Natl Acad Sci USA 92:8507–8511

    CAS  PubMed  Google Scholar 

  • Lu J, Shen Y, Wu Q, Kumar S, He B, Shi S, Carthew RW, Wang SM, Wu C (2008) The birth and death of microRNA genes in Drosophila. Nat Genet 40:351–355

    CAS  PubMed  Google Scholar 

  • Lynch M (2002) Intron evolution as a population-genetic process. Proc Natl Acad Sci USA 99:6118–6123

    CAS  PubMed  Google Scholar 

  • Lynch M (2007) The origins of genome architecture. Sinauer, Sunderland

    Google Scholar 

  • Maizels N, Weiner AM (1999) The genomic tag hypothesis: what molecular fossils tell us about the evolution of tRNA. In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA world, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 79–111

    Google Scholar 

  • Martin W, Russell MJ (2003) On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc Lond B Biol Sci 358:59–83

    CAS  PubMed  Google Scholar 

  • Mosig A, Chen JJ-L, Stadler PF (2007) Homology search with fragmented nucleic acid sequence patterns. In: Algorithms in bioinformatics. Lecture notes in bioinformatics, vol 4645. Springer, Berlin, pp 335–345

  • Mourier T, Jeffares DC (2003) Eukaryotic intron loss. Science 300:1393

    CAS  PubMed  Google Scholar 

  • Nedelcu AM (2009) Comparative genomics of phylogenetically diverse unicellular eukaryotes provide new insights into the genetic basis for the evolution of the programmed cell death machinery. J Mol Evol 68:256–268

    CAS  PubMed  Google Scholar 

  • Nilsson AI, Koskiniemi S, Eriksson S, Kugelberg E, Hinton JCD, Andersson DI (2005) Bacterial genome size reduction by experimental evolution. Proc Natl Acad Sci USA 102:12112–12116

    CAS  PubMed  Google Scholar 

  • Niu D-K (2007) Protecting exons from deleterious R-loops: a potential advantage of having introns. Biol Direct 2:11

    PubMed  Google Scholar 

  • Ofengand J, Bakin A (1997) Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria and chloroplasts. J Mol Biol 266:246–268

    CAS  PubMed  Google Scholar 

  • Omer AD, Lowe TM, Russell AG, Ebhardt H, Eddy SR, Dennis PP (2000) Homologs of small nucleolar RNAs in Archaea. Science 288:517–522

    CAS  PubMed  Google Scholar 

  • Omilian AR, Scofield DG, Lynch M (2008) Intron presence-absence polymorphisms in Daphnia. Mol Biol Evol 25:2129–2139

    CAS  PubMed  Google Scholar 

  • Penny D (2005) An interpretive review of the origin of life research. Biol Philos 20:633–671

    Google Scholar 

  • Penny D, Collins LJ (2009) Evolutionary genomics leads the way. In: Caetano-Anolles G (ed) Evolutionary genomics and systems biology. Wiley, Hoboken

    Google Scholar 

  • Penny D, Phillips MJ (2004) The rise of birds and mammals: are microevolutionary processes sufficient for macroevolution. Trends Ecol Evol 19:516–522

    PubMed  Google Scholar 

  • Poole AM (2006) Getting from an RNA world to modern cells just got a little easier. BioEssays 28:105–108

    CAS  PubMed  Google Scholar 

  • Poole AM (2009) Eukaryote evolution: the importance of the stem group. In: Caetano-Anolles G (ed) Evolutionary genomics and systems biology. Wiley, Hoboken

    Google Scholar 

  • Poole AM, Penny D (2007) Evaluating hypotheses for the origin of eukaryotes. BioEssays 29:74–84

    PubMed  Google Scholar 

  • Poole AM, Jeffares DC, Penny D (1998) The path from the RNA world. J Mol Evol 46:1–17

    CAS  PubMed  Google Scholar 

  • Poole AM, Jeffares DC, Penny D (1999) Prokaryotes, the new kids on the block. BioEssays 21:880–889

    CAS  PubMed  Google Scholar 

  • Reanney DC (1979) RNA splicing and polynucleotide evolution. Nature 277:598–600

    CAS  PubMed  Google Scholar 

  • Reanney DC (1987) Genetic error and genome design. Cold Spring Harb Symp Quant Biol 52:751–757

    CAS  PubMed  Google Scholar 

  • Ren XY, Vorst O, Fiers MWEJ et al (2006) In plants, highly expressed genes are the least compact. Trends Genet 22:528–532

    CAS  PubMed  Google Scholar 

  • Rodríguez-Trelles F, Tarrío R, Ayala FJ (2006) Origins and evolution of spliceosomal introns. Annu Rev Genet 40:47–76

    PubMed  Google Scholar 

  • Rose AB (2008) Intron-mediated regulation of gene expression. Curr Top Microbiol Immunol 326:277–290

    CAS  PubMed  Google Scholar 

  • Roy SW, Gilbert W (2006) The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet 7:211–221

    PubMed  Google Scholar 

  • Roy SW, Irimia M (2009a) Splicing in the eukaryote ancestor: form, function, and dysfunction. Trends Ecol Evol 24:447–455

    PubMed  Google Scholar 

  • Roy SW, Irimia M (2009b) Mystery of intron gain: new data and new models. Trends Genet 25:67–73

    CAS  PubMed  Google Scholar 

  • Roy SW, Penny D (2007) Widespread intron loss suggests retrotransposon activity in ancient apicomplexans. Mol Biol Evol 24:1926–1933

    CAS  PubMed  Google Scholar 

  • Rozhdestvensky TS, Tang TH, Tchirkova IV, Brosius J, Bachellerie JP, Hüttenhofer A (2003) Binding of L7Ae protein to the K-turn of archaeal snoRNAs: a shared RNA binding motif for C/D and H/ACA box snoRNAs in Archaea. Nucleic Acids Res 31:869–877

    CAS  PubMed  Google Scholar 

  • Russell AG, Charette JM, Spencer DF, Gray MW (2006) A very early evolutionary emergence of the minor spliceosome. Nature 443:863–866

    CAS  PubMed  Google Scholar 

  • Santos M, Zintzaras E, Szathmary E (2004) Recombination in primeval genomes: a step forward but still a long leap from maintaining a sizable genome. J Mol Evol 59:507–519

    CAS  PubMed  Google Scholar 

  • Sashital DG, Cornilescu G, Butcher SE (2004) U2-U6 RNA folding reveals a group II intron-like domain and a four-helix junction. Nat Struct Mol Biol 11:1237–1242

    CAS  PubMed  Google Scholar 

  • Schoemaker RJ, Gultyaev AP (2006) Computer simulation of chaperone effects of Archaeal C/D box sRNA binding on rRNA folding. Nucleic Acids Res 34:2015–2026

    CAS  PubMed  Google Scholar 

  • Scofield DG, Lynch M (2008) Evolutionary diversification of the Sm family of RNA-associated proteins. Mol Biol Evol 25:2255–2267

    CAS  PubMed  Google Scholar 

  • Seetharaman M, Eldho NV, Padgett RA, Dayie KT (2006) Structure of a self-splicing group II intron catalytic effector domain 5: parallels with spliceosomal U6 RNA. RNA 12:235–247

    CAS  PubMed  Google Scholar 

  • Sharp PA (2009) The centrality of RNA. Cell 136:577–580

    CAS  PubMed  Google Scholar 

  • Slamovits CH, Keeling PJ (2006) A high density of ancient spliceosomal introns in oxymonad excavates. BMC Evol Biol 6:e34

    Google Scholar 

  • Stoltzfus A (1999) On the possibility of constructive neutral evolution. J Mol Evol 49:169–181

    CAS  PubMed  Google Scholar 

  • Sun F-J, Caetano-Anolles G (2008) The origin and evolution of tRNA inferred from phylogenetic analysis of structure. J Mol Evol 66:21–35

    CAS  PubMed  Google Scholar 

  • Sverdlov AV, Csuros M, Rogozin IB, Koonin EV (2007) A glimpse of a putative pre-intron phase of eukaryotic evolution. Trends Genet 23:105–108

    CAS  PubMed  Google Scholar 

  • Tanaka H, Kato K, Yamashita E, Sumizawa T, Zhou Y, Yao M, Iwasaki K, Yoshimura M, Tsukihara T (2009) The structure of rat liver vault at 3.5 Angstrom resolution. Science 323:384–388

    CAS  PubMed  Google Scholar 

  • Tarrio R, Ayala FJ, Rodriguez-Trelles F (2008) Alternative splicing: a missing piece in the puzzle of intron gain. Proc Natl Acad Sci USA 105:7223–7228

    CAS  PubMed  Google Scholar 

  • Tran E, Zhang X, Lackey L, Maxwell ES (2005) Conserved spacing between the box C/D and C’/D’ RNPs of the archaeal box C/D sRNP complex is required for efficient 2′-O-methylation of target RNAs. RNA 11:285–293

    CAS  PubMed  Google Scholar 

  • Tycowski KT, Aab A, Steitz JA (2004) Guide RNAs with 5′ caps and novel box C/D snoRNA-like domains for modification of snRNAs in metazoa. Curr Biol 14:1985–1995

    CAS  PubMed  Google Scholar 

  • Valadkhan S, Mohammadi A, Jaladat Y, Geisler S (2009) Protein-free small nuclear RNAs catalyze a two-step splicing reaction. Proc Natl Acad Sci USA 106:11901–11906

    CAS  PubMed  Google Scholar 

  • Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat Rev Microbiol 5:316–323

    CAS  PubMed  Google Scholar 

  • Veretnik S, Wills C, Youkharibache P, Valas RE, Philip E, Bourne PE (2009) Sm/Lsm genes provide a glimpse into the early evolution of the spliceosome. PLoS Comp Biol 5:e1000315

    Google Scholar 

  • Wang M, Caetano-Anolles G (2009) The evolutionary mechanics of domain organization in proteomes and the rise of modularity in the protein world. Structure 17:66–78

    CAS  PubMed  Google Scholar 

  • Weiner AM (1993) Messenger-RNA splicing and autocatalytic introns—distant cousins or the products of chemical determinism. Cell 72:161–164

    CAS  PubMed  Google Scholar 

  • Woodhams MD, Stadler PF, Penny D, Collins LJ (2007) RNase MRP and the RNA processing cascade in the eukaryotic ancestor. BMC Evol Biol 7:S1–S13

    Google Scholar 

  • Xing Y, Lee C (2007) Relating alternative splicing to proteome complexity and genome evolution. Adv Exp Med Biol 623:36–49

    Article  PubMed  Google Scholar 

  • Ying SY, Lin SL (2009) Intron-mediated RNA interference and microRNA biogenesis. Methods Mol Biol 487:387–413

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Penny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penny, D., Hoeppner, M.P., Poole, A.M. et al. An Overview of the Introns-First Theory. J Mol Evol 69, 527–540 (2009). https://doi.org/10.1007/s00239-009-9279-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-009-9279-5

Keywords

Navigation