Skip to main content

Relating Alternative Splicing to Proteome Complexity and Genome Evolution

  • Chapter
Alternative Splicing in the Postgenomic Era

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 623))

Abstract

Prior to genomics, studies of alternative splicing primarily focused on the function and mechanism of alternative splicing in individual genes and exons. This has changed dramatically since the late 1990s. High-throughput genomics technologies, such as EST sequencing and microarrays designed to detect changes in splicing, led to genome-wide discoveries and quantification of alternative splicing in a wide range of species from human to Arabidopsis.1,2 Consensus estimates of AS frequency in the human genome grew from less than 5% in mid-1990s to as high as 60–74% now.3 The rapid growth in sequence and microarray data for alternative splicing has made it possible to look into the global impact of alternative splicing on protein function and evolution of genomes. In this chapter, we review recent research on alternative splicing’s impact on proteomic complexity and its role in genome evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Modrek B, Lee C. A genomic view of alternative splicing. Nature Genet 2002; 30:13–19.

    Article  CAS  PubMed  Google Scholar 

  2. Blencowe BJ. Alternative splicing: new insights from global analyses. Cell 2006; 126:37–47.

    Article  CAS  PubMed  Google Scholar 

  3. Johnson JM, Castle J, Garrett-Engele P et al. Genome-wide survey of human alternative pre-mRNA spiking with exon junction microarrays. Science 2003; 302:2141–2144.

    Article  CAS  PubMed  Google Scholar 

  4. Black DL. Protein diversity from alternative splicing: a challenge for bioinformatics and postgenome biology. Cell 2000; 103:367–370.

    Article  CAS  PubMed  Google Scholar 

  5. Gilbert W. Why genes in pieces? Nature 1978; 271:501.

    Article  CAS  PubMed  Google Scholar 

  6. Resch A, Xing Y, Modrek B et al. Assessing the impact of alternative splicing on domain interactions in the human proteome. J. Proteome Res 2004; 3:76–83.

    Article  CAS  PubMed  Google Scholar 

  7. Sorek R, Shamir R, Ast G et al. How prevalent is functional alternative splicing in the human genome? Trends Genet 2004; 20:68–71.

    Article  CAS  PubMed  Google Scholar 

  8. Resch A, Xing Y, Alekseyenko A et al. Evidence for a subpopulation of conserved alternative splicing events under selection pressure for protein reading frame preservation. Nucleic Acids Res 2004; 32:1261–1269.

    Article  CAS  PubMed  Google Scholar 

  9. Philipps PL, Park JW, Graveley BR et al. A computational and experimental approach toward a priori identification of alternatively spliced exons. RNA 2004; 10:1838–1844.

    Article  CAS  PubMed  Google Scholar 

  10. Sugnet CW, Kent WJ, Ares Jr. M et al. Transcriptome and genome conservation of alternative splicing events in humans and mice. Pac Symp Biocomput 2004; 66–77.

    Google Scholar 

  11. Xing Y, Lee C. Protein modularity of alternatively spliced exons is associated with tissue-specific regulatoiin of alternative splicing. PLoS Genet 2005; 1:e34.

    Article  PubMed  Google Scholar 

  12. Sugnet CW, Srinivasan K, Clark TA et al. Unusual intron conservation near tissue-regulated exons found by spiking microarrays. PLoS Comput Biol 2006; 2:e4.

    Article  PubMed  Google Scholar 

  13. Lewis BP, Green RE, Brenner SE et al. Evidence for the widespread coupling of alternative spiking and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci USA 2003; 100:189–192.

    Article  CAS  PubMed  Google Scholar 

  14. Hillman RT, Green RE, Brenner SE et al. An unappreciated role for RNA surveillance. Genome Biol 2004; 5:R8.

    Article  PubMed  Google Scholar 

  15. Wang P, Yan B, Guo JT et al. Structural genomics analysis of alternative splicing and application to isoform structure modeling. Proc Natl Acad Sci USA 2005; 102:18920–18925.

    Article  CAS  PubMed  Google Scholar 

  16. Sorek R, Shemesh R, Cohen Y et al. A non-EST-based method for exon-skipping prediction. Genome Res 2004; 14:1617–1623.

    Article  CAS  PubMed  Google Scholar 

  17. Volfovsky N, Haas BJ, Salzberg SL et al. Computational discovery of internal micro-exons. Genome Res 2003; 13:1216–1221.

    Article  CAS  PubMed  Google Scholar 

  18. Hiller M, Huse K, Szafranski K et al. Widespread occurrence of alternative splicing at NAGNAG acceptors contributes to proteome plasticity. Nat Genet 2004; 36:1255–1257.

    Article  CAS  PubMed  Google Scholar 

  19. Chern TM, van Nimwegen E, Kai C et al. A simple physical model predicts small earn length variations. PLoS Genet, 2006; 2:e45.

    Article  PubMed  Google Scholar 

  20. Xu Q, Modrek B, Lee C et al. Genome-wide detection of tissue-specific alternative splicing in the human transcriptome. Nucleic Acids Res 2002; 30:3754–3766.

    Article  CAS  PubMed  Google Scholar 

  21. Wilson FH, Disse-Nicoderne S, Choate KA et al. Human hypertension caused by mutations in WNK kinases. Science 2001; 293:1107–1112.

    Article  CAS  PubMed  Google Scholar 

  22. Wade JB, Fang L, Liu J et al. WNK1 kinase isoform switch regulates renal potassium excretion. Proc Natl Acad Sci USA 2006; 103:8558–8563.

    Article  CAS  PubMed  Google Scholar 

  23. Subramanya AR, Yang CL, Zhu X et al. Dominant-negative regulation of WNK1 by its kidney-specific tease-defective isoform. Am J Physiol Renal Physiol 2006; 290:F619–F624.

    Article  CAS  PubMed  Google Scholar 

  24. Lazrak A, Liu Z, Huang CL et al. Antagonistic regulation of ROMK by long and kidney-specific WNK1 isoforms. Proc Natl Acad Sci USA 2006; 103:1615–1620.

    Article  CAS  PubMed  Google Scholar 

  25. Delaloy C, Lu J, Houot AM et al. Multiple promoters in the WNK1 gene: one controls expression of a kidney-specific kinase-defective isoform. Mol Cell Biol 2003; 23:9208–9221.

    Article  CAS  PubMed  Google Scholar 

  26. O’Reilly M, Marshall E, Speirs HJ et al. WNK1, a gene within a novel blood pressure control pathway, tissue-specifically generates radically different isoforms with and without a kinase domain. J Am Soc Nephrol 2003; 14:2447–2456.

    Article  PubMed  Google Scholar 

  27. Kriventseva EV, Koch I, Apweiler R et al. Increase of functional diversity by alternative splicing. Trends Genet 2003; 19:124–128.

    Article  CAS  PubMed  Google Scholar 

  28. Liu S, Altman RB. Large scale study of protein domain distribution in the context of alternative splicing. Nucleic Acids Res 2003; 31:4828–4835.

    Article  CAS  PubMed  Google Scholar 

  29. Xing Y, Resch A, Lee C et al. The Multiassembly Problem: reconstructing multiple transcript isoforms from EST fragment mixtures. Genome Res 2004; 14:426–441.

    Article  CAS  PubMed  Google Scholar 

  30. Taneri B, Snyder B, Novoradovsky A et al. Alternative splicing of mouse transcription factors affects their DNA-binding domain architecture and is tissue specific. Genome Biol 2004; 5:R75.

    Article  PubMed  Google Scholar 

  31. Hiller M, Huse K, Platzer M et al. Creation and disruption of protein features by alternative splicing—a novel mechanism to modulate function. Genome Biol 2005; 6:R58.

    Article  PubMed  Google Scholar 

  32. Arribas J, Borroto A. Protein ectodomain shedding. Chem Rev 2002; 102:4627–4638.

    Article  CAS  PubMed  Google Scholar 

  33. Peters M, Muller AM, Rose-John S et al. Interleukin-6 and soluble interleukin-6 receptor: direct stimulation of gp130 and hematopoiesis. Blood 1998; 92:3495–3504.

    CAS  PubMed  Google Scholar 

  34. Xing Y, Xu Q, Lee C et al. Widespread production of novel soluble protein isoforms by alternative splicing removal of transmembrane anchoring domains. FEBS Lett 2003; 555:572–578.

    Article  CAS  PubMed  Google Scholar 

  35. Cline MS, Shigeta R, Wheeler RL et al. The effects of alternative splicing on transmembrane proteins in the mouse genome. Pac Symp Biocomput 2004; 17–28.

    Google Scholar 

  36. Davis MJ, Hanson KA, Clark F et al. Differential use of signal peptides and membrane domains is a common occurrence in the protein output of transcriptional units. PLoS Genet 2006; 2:e46.

    Article  PubMed  Google Scholar 

  37. Takeda J, Suzuki Y, Nakao M et al. Large-scale identification and characterization of alternative splicing variants of human gene transcripts using 56,419 completely sequenced and manually annotated full-length cDNAs. Nucleic Acids Res 2006; 34:3917–3928.

    Article  CAS  PubMed  Google Scholar 

  38. Nakao M, Barrero RA, Mukai Y et al. Large-scale analysis of human alternative protein isoforms: pattern classification and correlation with subcellular localization signals. Nucleic Acids Res, 2005; 33:2355–2363.

    Article  CAS  PubMed  Google Scholar 

  39. Romero PR, Zaidi S, Fang YY et al. Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc Natl Acad Sci USA 2006; 103:8390–8395.

    Article  CAS  PubMed  Google Scholar 

  40. Wen F, Li F, Xia H et al. The impact of very short alternative splicing on protein structures and functions in the human genome. Trends Genet 2004; 20:232–236.

    Article  CAS  PubMed  Google Scholar 

  41. Garcia J, Gerber SH, Sugita S et al. A conformational switch in the Piccolo C2A domain regulated by alternative splicing. Nat Struct Mol Biol 2004; 11:45–53.

    Article  CAS  PubMed  Google Scholar 

  42. Sorek R, Ast G, Graur D et al. Alu-containing exons are alternatively spliced. Genome Res 2002; 12:1060–1067.

    Article  CAS  PubMed  Google Scholar 

  43. Modrek B, Lee C. Alternative splicing in the human, mouse and rat genomes is associated with an increased rate of exon creation/loss. Nature Genet 2003; 34:177–180.

    Article  CAS  PubMed  Google Scholar 

  44. Pan Q, Shai O, Misquitta C et al. Revealing global regulatory features of Mammalian alternative splicing using a quantitative microarray platform. Mol Cell 2004; 16:929–941.

    Article  CAS  PubMed  Google Scholar 

  45. Malko DB, Makeev VJ, Mironov AA et al. Evolution of exon-intron structure and alternative splicing in fruit flies and malarial mosquito genomes. Genome Res 2006; 16:505–509.

    Article  CAS  PubMed  Google Scholar 

  46. Pan Q, Bakowski MA, Morris Q et al. Alternative splicing of conserved exons is frequently species-specific in human and mouse. Trends Genet 2005; 21:73–77.

    Article  CAS  PubMed  Google Scholar 

  47. Cusack BP, Wolfe KH. Changes in alternative splicing of human and mouse genes are accompanied by faster evolution of constitutive exons. Mol Biol Evol 2005; 22:2198–2208.

    Article  CAS  PubMed  Google Scholar 

  48. Wang W, Zheng H, Yang S et al. Origin and evolution of new exons in rodents. Genome Res 2005; 15:1258–1264.

    Article  CAS  PubMed  Google Scholar 

  49. Alckseycnko A, Kim N, Lee C et al. Global analysis of exon creation vs. loss and the role of alternative splicing, in 17 vertebrate genomes. RNA 2007; 13:661–670.

    Article  Google Scholar 

  50. Blanchette M, Kent WJ, Riemer C et al. et al. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res 2004; 14:708–715.

    Article  CAS  PubMed  Google Scholar 

  51. Hinrichs AS, Karolchik D, Baertsch R et al. The UCSC Genome Browser Database: update 2006. Nucleic Acids Res 2006; 34:D590–D598.

    Article  CAS  PubMed  Google Scholar 

  52. Shemesh R, Novik A, Edelheit S et al. Genomic fossils as a snapshot of the human transcriptome. Proc Natl Acad Sci USA 2006; 103:1364–1369.

    Article  CAS  PubMed  Google Scholar 

  53. Iida K, Akashi H. A test of translational selection at’ silent’ sites in the human genome: base composition comparisons in alternatively spliced genes. Gene 2000; 261:93–105.

    Article  CAS  PubMed  Google Scholar 

  54. Hurst LD, Pal C. Evidence for purifying selection acting on silent sites in BRCA1. Trends Genet 2001; 17:62–65.

    Article  CAS  PubMed  Google Scholar 

  55. Filip LC, Mundy NI. Rapid evolution by positive Darwinian selection in the extracellular domain of the abundant lymphocyte protein CD45 in primates. Mol Biol Evol 2004; 21:1504–1511.

    Article  CAS  PubMed  Google Scholar 

  56. Back D, Green P. Sequence conservation, relative isoform frequencies and nonsense-mediated decay in evolutionarily conserved alternative splicing. Proc Natl Acad Sci USA 2005; 102:12813–12818.

    Article  Google Scholar 

  57. Xing Y, Lee C. Assessing the application of Ka/Ks ratio test to alternatively spliced exons. Bioinformatics 2005; 21:3701–3703.

    Article  CAS  PubMed  Google Scholar 

  58. Xing Y, Lee C. Evidence of functional selection pressure fer alternative splicing events that accelerate evolution of protein subsequences. Proc Natl Acad Sci USA 2005; 102:13526–13531.

    Article  CAS  PubMed  Google Scholar 

  59. Chen FC, Wang SS, Chen CJ et al. Alternatively and constitutively spliced exons arc subject to different evolutionary forces. Mol Biol Evol 2006; 23:675–682.

    Article  PubMed  Google Scholar 

  60. Ermakova EO, Nurtdinov RN and Gelfand MS. Fast rate of evolution in alternatively spliced coding regions of mammalian genes, BMC Genomics 2006; 7:84.

    Article  PubMed  Google Scholar 

  61. Plass M, Eyras E. Differentiated evolutionary rates in alternative exons and the implications for splicing regulation. BMC Evol Biol 2006; 6:50.

    Article  PubMed  Google Scholar 

  62. Xing Y, Lee C. Negative selection pressure against premature protein truncation is reduced by alternative splicing and diploidy. Trends Genet 2004; 20:472–475.

    Article  CAS  PubMed  Google Scholar 

  63. Orban TI, Olah E. Purifying selection on silent sites—a constraint from splicing regulation? Trends Genet 2001; 17:252–253.

    Article  CAS  PubMed  Google Scholar 

  64. Bejerano G, Pheasant M, Makunin I et al. Ultraconserved elements in the human genome. Science 2004; 304:1321–1325.

    Article  CAS  PubMed  Google Scholar 

  65. Sironi M, Menozzi G, Comi GP et al. Analysis of intronic conserved elements indicates that functional complexity might represent a major source of negative selection on noncoding sequences. Hum Mol Genet 2005; 14:2533–2546.

    Article  CAS  PubMed  Google Scholar 

  66. Sironi M, Mertozzi G, Comi GP et al. Fixation of conserved sequences shapes human intron size and influences transposon-insertion dynamics. Trends Genet 2005; 21:484–488.

    Article  CAS  PubMed  Google Scholar 

  67. Sorek R, Ast G. Intronic sequences flanking alternatively spliced exons are conserved between human and mouse. Genome Res 2003; 13:1631–1637.

    Article  CAS  PubMed  Google Scholar 

  68. Kaufmann D, Kenner O, Nurnberg P et al. In NF1, CFTR, PER3, CARS and SYT7, alternatively included exons show higher conservation of surrounding intron sequences than constitutive exons. Eur J Hum Genet 2004; 12:139–149.

    Article  CAS  PubMed  Google Scholar 

  69. Itoh H, Washio T, Tomita M et al. Computational comparative analyses of alternative splicing regulation using full-length cDNA of various eukaryotes. RNA 2004; 10:1005–1018.

    Article  CAS  PubMed  Google Scholar 

  70. Zheng CL, Fu XD, Gribskov M et al. Characteristics and regulatory elements defining constitutive splicing and different modes of alternative splicing in human and mouse. RNA 2005; 11:1777–1787.

    Article  CAS  PubMed  Google Scholar 

  71. Xing Y, Lee C. Can RNA selection pressure distort the measurement of Ka/Ks? Gene 2006; 370:1–5.

    Article  CAS  PubMed  Google Scholar 

  72. Fairbrother WG, Yeh RF, Sharp PA et al. Predictive identification of exonic splicing enhancers in human genes. Science 2002; 297:1007–1013.

    Article  CAS  PubMed  Google Scholar 

  73. Fairbrother WG, Holste D, Burge CB et al. Single Nucleotide Polymorphism-Based Validation of Exonic Splicing Enhancers. PLoS Biol 2004; 2:E268.

    Article  PubMed  Google Scholar 

  74. Carlini DB, Genut JE. Synonymous SNPs Provide Evidence for Selective Constraint on Human Exonic Splicing Enhancers. J Mol Evol 2005.

    Google Scholar 

  75. Parmley JL, Chamary JV, Hurst LD et al. Evidence for Purifying Selection Against Synonymous Mutations in Mammalian Exonic Splicing Enhancers. Mol Biol Evol 2006.

    Google Scholar 

  76. Kabat JL, Barberan-Soler S, McKenna P et al. Intronic alternative splicing regulators identified by comparative genomics in nematodes. PLoS Comput Biol 2006; 2:e86.

    Article  PubMed  Google Scholar 

  77. Graveley BR. Mutually exclusive splicing of the insect Dscam pre-mRNA directed by competing intronic RNA secondary structures. Cell 2005; 123:65–73.

    Article  CAS  PubMed  Google Scholar 

  78. Kreahling JM, Graveley BR. The iStem, a long-range RNA secondary structure dement required for efficient exon inclusion in the Drosophila Dscam pre-mRNA. Mol Cell Biol 2005; 25:10251–10260.

    Article  CAS  PubMed  Google Scholar 

  79. Baraniak AP, Lasda EL, Wagner EJ et al. A stem structure In fibroblast growth factor receptor 2 transcripts mediates cell-type-specific splicing by approximating intronic control elements. Mol Cell Biol 2003; 23:9327–9337.

    Article  CAS  PubMed  Google Scholar 

  80. Muh SJ, Hovhannisyan RH, Carstens RP. A Nonsequence-specific double-stranded RNA structural element regulates splicing of two mutually exclusive exons of fibroblast growth factor receptor 2 (FGFR2). J Biol Chem 2002; 277:50143–50154.

    Article  CAS  PubMed  Google Scholar 

  81. McAlinden A, Havlioglu N, Liang L et al. Alternative splicing of type II procollagen exon 2 is regulated by the combination of a weak 5′ splice site and an adjacent intronic stem-loop cis element. J Biol Chem 2005; 280:32700–32711.

    Article  CAS  PubMed  Google Scholar 

  82. Hefferon TW, Groman JD, Yurk CE et al. A variable dinucleotide repeat in the CFTR gene contributes to phenotype diversity by forming RNA secondary structures that alter splicing. Proc Natl Acad Sci USA 2004; 101:3504–3509.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Xing, Y., Lee, C. (2007). Relating Alternative Splicing to Proteome Complexity and Genome Evolution. In: Blencowe, B.J., Graveley, B.R. (eds) Alternative Splicing in the Postgenomic Era. Advances in Experimental Medicine and Biology, vol 623. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77374-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-77374-2_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-77373-5

  • Online ISBN: 978-0-387-77374-2

Publish with us

Policies and ethics